Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 50
Filter
Add more filters










Publication year range
1.
Annu Rev Phys Chem ; 75(1): 67-88, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38941529

ABSTRACT

Experimental studies of the collision phenomena of submicrometer particles is a developing field. This review examines the range of phenomena that can be observed with new experimental approaches. The primary focus is on single-particle impact studies enabled by charge detection mass spectrometry (CDMS) implemented using the Aerosol Impact Spectrometer (AIS) at the University of California, San Diego. The AIS combines electrospray ionization, aerodynamic lens techniques, CDMS, and an electrostatic linear accelerator to study the dynamics of particle impact over a wide range of incident velocities. The AIS has been used for single-particle impact experiments on positively charged particles of diverse composition, including polystyrene latex spheres, tin particles, and ice grains, over a wide range of impact velocities. Detection schemes based on induced charge measurements and time-of-flight mass spectrometry have enabled measurements of the impact inelasticity through the determination of the coefficient of restitution, measurements of the angular distributions of scattered submicrometer particles, and the chemical composition and dissociation of solute molecules in hypervelocity ice grain impacts.

2.
Proc Natl Acad Sci U S A ; 120(50): e2313447120, 2023 Dec 12.
Article in English | MEDLINE | ID: mdl-38048472

ABSTRACT

Astrobiology studies are a top priority in answering one of the most fundamental questions in planetary science: Is there life beyond Earth? Saturn's icy moon Enceladus is a prime target in the search for life in our solar system, identified by NASA as the second-highest priority site for a flagship mission in the next decade. The orbital sampling technique of impact ionization mass spectrometry indicated the presence of complex organics in the small icy plume particles ejected by Enceladus encountered previously by Cassini. However, high interaction velocities caused ambiguity as to the origin and identity of the organics. Laboratory validation of this technique is needed to show that biosignature molecules can survive an impact at hypervelocity speeds for detection. Here, we present results on the hypervelocity impact of organic-laden submicron ice grains for in situ mass spectrometric characterization with the first technique to accurately replicate this plume sampling scenario: the Hypervelocity Ice Grain Impact Mass Spectrometer. Our results show good agreement with Cassini data at comparable compositions. We show that amino acids entrained in ice grains can be detected intact after impact at speeds up to 4.2 km/s and that salt reduces their detectability, validating the predictions from other model systems. Our results provide a benchmark for this orbital sampling method to successfully detect signs of life and for the interpretation of past and future data. This work has implications not only for a potential Enceladus mission but also for the forthcoming Europa Clipper mission.

3.
J Phys Chem Lett ; 14(47): 10677-10684, 2023 Nov 30.
Article in English | MEDLINE | ID: mdl-37988598

ABSTRACT

In-situ Raman spectroscopy of single levitated charged aqueous microdroplets irradiated by dual-beam (266 and 532 nm) lasers demonstrates that the nitrate anion (NO3-) can be depleted in the droplet through an energy transfer mechanism following excitation of sulfanilic acid (SA), a UV-absorbing aromatic organic compound. Upon 266 nm irradiation, a fast decrease of the NO3- concentration was observed when SA is present in the droplet. This photoinduced reaction occurs without the direct photolysis of NO3-. Instead, the rate of NO3- depletion was found to depend on the initial concentration of SA and the pH of the droplet. Based on absorption-emission spectral analysis and excited-state energy calculations, triplet-triplet energy transfer between SA and NO3- is proposed as the underlying mechanism for the depletion of NO3- in aqueous microdroplets. These results suggest that energy transfer mechanisms initiated by light-absorbing organic molecules may play a significant role in NO3- photochemistry.

4.
J Am Chem Soc ; 145(41): 22317-22321, 2023 Oct 18.
Article in English | MEDLINE | ID: mdl-37787586

ABSTRACT

The chemistry of pyruvic acid (PA) under thermal dark conditions is limited in bulk solutions, but in microdroplets it is shown to readily occur. Utilizing in situ micro-Raman spectroscopy as a probe, we investigated the chemistry of PA within aqueous microdroplets in a relative humidity- and temperature-controlled environmental cell. We found that PA undergoes a condensation reaction to yield mostly zymonic acid. Interestingly, the reaction follows a size-dependent sigmoidal kinetic profile, i.e., an induction period followed by reaction and then completion. The induction time is linearly proportional to the surface area (R2), and the maximum apparent reaction rate is proportional to the surface-to-volume ratio (1/R), showing that both the induction and reaction occur at the air-water interface. Furthermore, the droplet size is shown to be dynamic due to changes in droplet composition and re-equilibration with the relative humidity within the environmental cell as the reaction proceeds. Overall, the size-dependent sigmoidal kinetics, shown for the first time in microdroplets, demonstrates the complexity of the reaction mechanism and the importance of the air-water interface in the pyruvic acid condensation reaction.

5.
J Phys Chem Lett ; 13(1): 142-148, 2022 Jan 13.
Article in English | MEDLINE | ID: mdl-34962408

ABSTRACT

Transition state dynamics of bimolecular reactions can be probed by photodetachment of a precursor anion when the Franck-Condon region of the corresponding neutral potential energy surface is near a saddle point. In this study, photodetachment of anions at m/z = 49 enabled investigation of the exit channel of the OH + CH3OH → H2O + CH3O reaction using photoelectron-photofragment coincidence spectroscopy. High-level coupled-cluster calculations of the stationary points on the anion surface show that the methoxide-water cluster CH3O-(H2O) is the stable minimum on the anion surface. Photodetachment at a 3.20 eV photon energy leads to long-lived H2O(CH3O) complexes and H2O + CH3O products consistent with both direct dissociative photodetachment and resonance mediated processes on the neutral surface. The partitioning of total kinetic energy in the system indicates that water stretch and bend excitation is induced in dissociative photodetachment and evidence for long-lived complexes consistent with vibrational Feshbach resonances is reported.

6.
Science ; 372(6548): 1268, 2021 Jun 18.
Article in English | MEDLINE | ID: mdl-34140373
7.
J Phys Chem A ; 125(21): 4540-4547, 2021 Jun 03.
Article in English | MEDLINE | ID: mdl-34030440

ABSTRACT

Photoelectron-photofragment coincidence (PPC) measurements on OH-(C2H4) anions at a photon energy of 3.20 eV revealed stable and dissociative photodetachment product channels, OH-C2H4 + e- and OH + C2H4 + e-, respectively. The main product channel observed was dissociation to the reactants (>67%), OH + C2H4 (v = 0, 1, 2) + e-, where vibrational excitation in the C-H stretching modes of the C2H4 photofragments corresponds to a minor channel. The low kinetic energy release (KER) of the dissociating fragments is consistent with weak repulsion between the OH + C2H4 reactants near the transition state as well as the partitioning of energy into rotation of the dissociation products. An impulsive model was used to account for rotational energy partitioning in the dissociative photodetachment (DPD) process and showed good agreement with the experimental results. The low KER of the dissociating fragments and the similarities in the photoelectron spectra between stable and dissociative events support a mechanism involving the van der Waals complex formed upon photodetachment of OH-(C2H4) as an intermediate in the dominant OH + C2H4 + e- dissociative channel.

8.
Phys Chem Chem Phys ; 22(48): 28468, 2020 Dec 23.
Article in English | MEDLINE | ID: mdl-33319874

ABSTRACT

Correction for 'Dissociative detachment of the fluoroformate anion' by Eugene Shirman et al., Phys. Chem. Chem. Phys., 2020, DOI: 10.1039/d0cp04283h.

9.
Phys Chem Chem Phys ; 22(47): 27666-27672, 2020 Dec 16.
Article in English | MEDLINE | ID: mdl-33236734

ABSTRACT

Dissociative photodetachment of the FCO2- fluoroformate complex by intense laser pulses is studied using 3D coincidence fragment imaging. The main channels are found to be CO2 + F and FCO + O. Cleavage of the C-F bond is attributed to dissociation on the B[combining tilde]2A1 excited state of the neutral FCO2 radical with significant internal excitation of the molecular fragment, while reductive dissociation of the CO2 moiety is assigned to higher lying states. The measured dissociative ionization products of double-photodetachment are discussed and attributed to intense-laser ionization of dissociative photodetachment products.

10.
J Phys Chem B ; 124(42): 9385-9395, 2020 10 22.
Article in English | MEDLINE | ID: mdl-32960606

ABSTRACT

Atmospheric aerosols can exist as supersaturated (metastable) liquid or glassy states, with physical and chemical properties that are distinct from the solid or liquid phases. These unique properties of aerosols have substantial implications on climate and health effects. Direct investigations on metastable aerosols remain a challenge because any interfacial contact can cause heterogeneous nucleation. In this study, in situ Raman spectroscopic and Mie scattering imaging analysis is applied to metastable aerosols in the absence of physical contact using an environment-controlled electrodynamic balance (EDB). This has allowed a detailed study of the O-H stretching regions of the Raman spectrum, revealing evidence for the rearrangement of hydrogen-bonding structures of levitated aqueous citric acid (CA) and aqueous sucrose droplets at metastable liquid states. We found that carboxyl groups in a CA droplet yield distinctive dynamics of strong and weak hydrogen bonds, whereas hydroxyl groups in a sucrose droplet show correlated strong and weak interactions. Such effects are particularly important in a supersaturated solution. These results indicate that metastable liquid aerosols from different sources may exhibit distinct physical and chemical behavior.

11.
Rev Sci Instrum ; 91(6): 063305, 2020 Jun 01.
Article in English | MEDLINE | ID: mdl-32611045

ABSTRACT

A novel detector for measuring the post-impact velocities (trajectory and speed) of charged submicrometer particles is presented. A stack of tapered cylindrically symmetric electrodes connected to a set of image charge detection circuits is used in conjunction with an image-charge-sensitive target to measure the incident velocity and scattered trajectories of charged particles following impact with the target. This particle detector is used in conjunction with a mass, charge, and energy-selected source of collimated charged particles. Polystyrene latex spheres were used to characterize the performance of the detector, and examples of scattering trajectories are analyzed to demonstrate detector functionality. Measurements of the coefficient of restitution for 500 nm diameter tin particles are also reported and compared with previous measurements performed with a simpler image-charge detector. Finally, the angular distribution for 500 nm tin particles scattering from highly polished molybdenum at an incident velocity of 150 m/s is reported.

12.
Phys Chem Chem Phys ; 21(27): 15062-15071, 2019 Jul 10.
Article in English | MEDLINE | ID: mdl-31241079

ABSTRACT

Sea spray aerosols contain a large array of organic compounds that contribute to high viscosities at low relative humidity and temperature thereby slowing translational diffusion of water. The Stokes-Einstein equation describes how viscosity is inversely correlated with the translational diffusion coefficient of the diffusing species. However, recent studies indicate that the Stokes-Einstein equation breaks down at high viscosities achieved in the particle phase (>1012 Pa s), underestimating the predicted water diffusion coefficient by orders of magnitude and revealing the need for directly studying the diffusion of water in single aerosols. A new method is reported for measuring the water diffusion coefficient in single suspended charged sucrose-water and citric acid (CA)-water microdroplets in the 30-60 micron diameter range. The translational water diffusion coefficient is quantified using the H2O/D2O isotope exchange technique between 26 and 54% relative humidity (RH) for sucrose and 7 and 25% RH for CA using a recently developed mobile electrodynamic balance apparatus. The results are in good agreement with the literature, particularly the Vignes-type parameterization from experiments using isotope exchange and optical tweezers. Below 15% RH, CA droplets show incomplete H2O/D2O exchange. This mobile electrodynamic balance will allow future studies of atmospherically relevant chemical systems, including field studies.

13.
Front Chem ; 7: 295, 2019.
Article in English | MEDLINE | ID: mdl-31114785

ABSTRACT

A cryogenic octopole accumulation trap (COAT) has been coupled to a photoelectron-photofragment coincidence (PPC) spectrometer allowing for improved control over anion vibrational excitation. The anions are heated and cooled via collisions with buffer gas <17 K. Shorter trapping times (500 µs) prevent thermalization and result in anions with high internal excitation while longer trapping times (80 ms) at cryogenic temperatures thermalize the ions to the temperature of the buffer gas. The capabilities of the COAT are demonstrated using PPC spectroscopy of O 3 - at 388 nm (Ehν = 3.20 eV). Cooling the precursor anions with COAT resulted in the elimination of the autodetachment of vibrationally excited O 2 - produced by the photodissociation O 3 - + hν → O + O 2 - (v ≥ 4). Under heating conditions, a lower limit temperature for the anions was determined to be 1,500 K through Franck-Condon simulations of the photodetachment spectrum of O 3 - , considering a significant fraction of the ions undergo photodissociation in competition with photodetachment. The ability to cool or heat ions by varying ion injection and trapping duration in COAT provides a new flexibility for studying the spectroscopy of cold ions as well as thermally activated processes.

14.
J Phys Chem A ; 123(23): 4825-4833, 2019 Jun 13.
Article in English | MEDLINE | ID: mdl-31145616

ABSTRACT

Photoelectron-photofragment coincidence (PPC) spectroscopy was used to characterize the energetics and dynamics of the OH + CH4 → H2O + CH3 reaction initiated by photodetachment of the OH-(CH4) anion complex. PPC measurements at a photon energy of 3.20 eV yielded stable (OH-CH4 + e-) and dissociative (OH + CH4 (ν1 or ν3, v = 0, 1) + e-) channels. The main channel is dissociation to OH + CH4 + e- with a low kinetic energy release (KER), peaking at 0.04 eV. Interpretation of the experimental results was supported by quantum chemistry and quasiclassical trajectory calculations. The anion potential energy surface was constructed at the correlated coupled cluster singles, doubles, and perturbative triples level with augmented correlation consistent polarized valence triple-ζ basis set, and previously calculated neutral potential energy surfaces were used. Quasiclassical simulation of the dynamics of the OH-CH4 complex was carried out by selecting the momenta and coordinates from the Wigner distribution for the anion, providing the starting point for 4000 trajectories on the neutral potential energy surface. In agreement with the experimental results, most of the trajectories yield slowly recoiling OH + CH4 reactants while some are trapped in the entrance channel van der Waals well.

15.
Angew Chem Int Ed Engl ; 58(16): 5312-5315, 2019 Apr 08.
Article in English | MEDLINE | ID: mdl-30784162

ABSTRACT

The photoexcitation of cold oxyallyl anions was studied below the adiabatic detachment threshold at a photon energy of 1.60 eV. Photodetachment was observed through two product channels, delayed electron emission from a long-lived anionic state and dissociative photodetachment via absorption of a second photon. The former produced stable neutral C3 H4 O, while the latter resulted in the concerted elimination of CO+C2 H4 products. The neutral oxyallyl singlet state has a barrier-free route to cyclopropanone as well as zwitterionic character with a large charge separation and dipole moment. The role of long-lived dipole-bound resonances built on the singlet state below the detachment threshold is discussed. These results provide one of the first observations of delayed photoemission in a small cold molecular radical anion, a consequence of the complex electronic structure of the neutral diradical, and provide an example of resonance-mediated control of the photodissociation processes.

16.
J Phys Chem Lett ; 9(23): 6808-6813, 2018 Dec 06.
Article in English | MEDLINE | ID: mdl-30433784

ABSTRACT

Double photodetachment of the cluster F-·H2O in a strong laser field is explored in a combined experimental-theoretical study. Products are observed experimentally by coincidence photofragment imaging following double ionization by intense laser pulses. Theoretically, equation of motion coupled cluster calculations (EOM-CC), suitable for modeling strong correlation effects in the electronic wave function, shed light on the Franck-Condon region, and ab initio molecular dynamics simulations also performed using EOM-CC methods reveal the fragmentation dynamics in time on the lowest-lying singlet and triplet states of [F·H2O]+. The simulations show the formation of H2O+ + F, which is the predominant experimentally observed product channel. Suggestions are proposed for the formation mechanisms of the minor products, for example, the very interesting H2F+, which involves significant geometrical rearrangement. Analysis of the results suggests interesting future directions for the exploration of photodetachment of anionic clusters in an intense laser field.

17.
Angew Chem Int Ed Engl ; 57(19): 5394-5397, 2018 05 04.
Article in English | MEDLINE | ID: mdl-29486066

ABSTRACT

In an effort to characterize the electronic states of ethylenedione, OCCO, photoelectron-photofragment coincidence (PPC) spectroscopy was applied to measure anions at m/z 56 and 57 using a pulsed discharge of glyoxal vapor and N2 O. PPC measurements at a photon energy of 3.20 eV yield photoelectron spectra in coincidence with either neutral photofragments or stable neutral products. The measurements showed that primarily stable neutral products were formed, with photoelectron spectra consistent with the oxyallyl diradical, C3 H4 O, and acetone enolate radical, C3 H5 O. The spectra were also found to have features nearly identical to those reported for OCCO and HOCCO by Sanov and co-workers. The stability of the neutral products, as well as an examination of spectra reported for the oxyallyl anion and acetone enolate show that the previous assignments of OCCO and HOCCO are in error, and are instead attributed here to the oxyallyl diradical, C3 H4 O, and the acetone enolate radical, C3 H5 O.

18.
Chem Soc Rev ; 46(24): 7650-7667, 2017 Dec 11.
Article in English | MEDLINE | ID: mdl-29188835

ABSTRACT

The dynamics of chemical reactions are often governed by transient species, including the transition state for activated bimolecular reactions. Such transient species are difficult to study experimentally, but it has proven valuable to prepare and probe transition-state dynamics by the photodetachment of anions with an equilibrium geometry similar to the neutral transition state. In this review, recent experimental advances in photoelectron and photoelectron-photofragment coincidence spectroscopy are discussed, as well as the latest progress in the calculation of multidimensional potential energy surfaces and quantum dynamics calculations that have enabled an extension of studies of transition-state dynamics to increasingly multidimensional polyatomic systems. Examples of important dynamical effects such as mode specificity, tunneling, resonance and product energy disposal in reaction dynamics are discussed.

19.
Chem Sci ; 8(11): 7821-7833, 2017 Nov 01.
Article in English | MEDLINE | ID: mdl-29163919

ABSTRACT

The reaction F + H2O → HF + OH is a four-atom system that provides an important benchmark for reaction dynamics. Hydrogen atom transfer at the transition state for this reaction is expected to exhibit a strong dependence on reactant vibrational excitation. In the present study, the vibrational effects are examined by photodetachment of vibrationally excited F-(H2O) precursor anions using photoelectron-photofragment coincidence (PPC) spectroscopy and compared with full six-dimensional quantum dynamical calculations on ab initio potential energy surfaces. Prior to photodetachment at hνUV = 4.80 eV, the overtone of the ionic hydrogen bond mode in the precursor F-(H2O), 2νIHB at 2885 cm-1, was excited using a tunable IR laser. Experiment and theory show that vibrational energy in the anion can be effectively carried away by the photoelectron upon a Franck-Condon photodetachment, and also show evidence for an increase of branching into the F + H2O reactant channel. The experimental results suggest a greater role for product rotational excitation than theory. Improved potential energy surfaces and longer wavepacket propagation times would be helpful to further examine the nature of the discrepancy.

20.
J Chem Phys ; 147(9): 094307, 2017 Sep 07.
Article in English | MEDLINE | ID: mdl-28886639

ABSTRACT

Photoelectron-photofragment coincidence (PPC) spectra of ozonide, O3-, were measured at 388 nm (Ehν = 3.20 eV) using a newly constructed cryogenic octopole accumulation trap coupled to a PPC spectrometer. The photoelectron spectra reveal three processes consisting of a stable photodetachment channel, and two distinct photodissociation pathways yielding (1) O2 + O- or (2) O + O2-. The first photodissociation pathway is observed in the PPC spectra by photodetachment of the O- product by a second photon, and produces electronically excited O2(1Δg). The O2- product of the second photodissociation pathway undergoes autodetachment for O2-(2Πg, v″ > 4), a process greatly enhanced by vibrational excitation of the precursor O3-. Cooling anions thermalized at 300 K to <17 K in a cryogenic octopole accumulation trap essentially turns off this autodetachment pathway. The product kinetic energy distribution in coincidence with the autodetached electrons from O2-(v″ = 4) exhibits resolved features consistent with bend (ν2), asymmetric stretch (ν3) and a stretching combination band (ν1 + ν3) in the intermediate electronic state, illustrating the insights that can be gained from kinematically complete measurements. These results are discussed in the context of the low-lying excited states of O3-.

SELECTION OF CITATIONS
SEARCH DETAIL
...