Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
BioTech (Basel) ; 13(2)2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38804294

ABSTRACT

Bioaerosols and pathogens in indoor workplaces and residential environments are the primary culprits of several infections. Techniques for sanitizing air and surfaces typically involve the use of UV rays or chemical sanitizers, which may release chemical residues harmful to human health. Essential oils, natural substances derived from plants, which exhibit broad antimicrobial properties, could be a viable alternative for air and surface sanitation. The objective of this study has been to investigate the efficacy of thyme essential oil (TEO) in environmental sanitation processes. In Vitro assays through agar well diffusion, disk volatilization and tube dilution methods revealed significant antimicrobial activity of TEO 100% against foodborne and environmental isolates, with both bacteriostatic/fungistatic and bactericidal/fungicidal effects. Therefore, aqueous solutions of TEO 2.5% and 5% were formulated for air sanitation through nebulization and surface disinfection via direct contact. Bioaerosol samples and surface swabs were analyzed before and after sanitation, demonstrating the efficacy of aqueous solutions of TEO in reducing mesophilic and psychrophilic bacteria and environmental fungi levels in both air and on surfaces. The obtained results prove the antimicrobial potential of aqueous solutions of TEO in improving indoor air quality and surface cleanliness, suggesting thyme essential oil as an effective and safe natural sanitizer with minimal environmental impact compared to dangerous chemical disinfectants.

2.
J Robot Surg ; 18(1): 209, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38727915

ABSTRACT

This study aimed to report our experience in indocyanine green (ICG) fluorescence-guided surgery (FGS) in pediatric robotics. The data of 55 patients (35 boys and 20 girls), who underwent robotic surgery using ICG fluorescence in three institutions over the last 7 years, were retrospectively reviewed. The following robotic procedures were included: pyeloplasty (n = 21), complex Lich-Gregoir ureteral reimplantation (n = 8), varicocelectomy (n = 7), adnexal pathology resection (n = 8), partial nephrectomy (n = 4), nephrectomy (n = 4), renal cyst removal (n = 2), and excision of prostatic utricle (n = 1). The ICG was injected intravenously in all indications except for varicocele where intratesticular injection was done, and prostatic utricle or paraureteral diverticulum where trans-catheter injection was done. The ICG dosage was 0.2-0.3 mg/mL/kg. All the procedures were performed using da Vinci Xi platform. Firefly® allowed to switch form bright light to ICG-NIRF view and vice versa. All the procedures were accomplished in robotics without conversions to laparoscopy or open surgery. No episodes of allergy or anaphylaxis to ICG were recorded. An excellent ICG-NIRF view of target organs was obtained in all procedures. Based on our experience, we believe that application of ICG FGS in pediatric robotics enhances the identification of critical anatomical elements and pathological structures, thereby positively impacting both oncological and functional outcomes. This technique is safe, feasible, and versatile. We advocate the consideration of ICG as the standard of care in certain procedures such as partial nephrectomy, varicocele repair, tumor resection, and ovarian torsion. Nonetheless, further investigations are warranted to explore its potential broader applications in pediatric urology.


Subject(s)
Indocyanine Green , Robotic Surgical Procedures , Humans , Indocyanine Green/administration & dosage , Robotic Surgical Procedures/methods , Female , Male , Child , Retrospective Studies , Child, Preschool , Adolescent , Infant , Fluorescence , Nephrectomy/methods , Surgery, Computer-Assisted/methods
3.
Front Microbiol ; 15: 1383027, 2024.
Article in English | MEDLINE | ID: mdl-38711969

ABSTRACT

The improper use and abuse of antibiotics have led to an increase in multidrug-resistant (MDR) bacteria resulting in a failure of standard antibiotic therapies. To date, this phenomenon represents a leading public health threat of the 21st century which requires alternative strategies to fight infections such as the identification of new molecules active against MDR strains. In the last 20 years, natural extracts with biological activities attracted scientific interest. Following the One Health Approach, natural by-products represent a sustainable and promising alternative solution. Consistently, the aim of the present study was to evaluate the antimicrobial activity of hydro-alcoholic pomegranate peel extract (PPE) against MDR microorganisms belonging to Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter spp. "ESKAPE" group pathogens. Through semiquantitative and quantitative methods, the PPE showed effective antimicrobial activity against Gram-positive and Gram-negative MDR bacteria. The kinetics of bactericidal action of PPE highlighted that microbial death was achieved in a time- and dose-dependent manner. High concentrations of PPE exhibited antioxidant activity, providing a protective effect on cellular systems and red blood cell membranes. Finally, we report, for the first time, a significant intracellular antibacterial property of PPE as highlighted by its bactericidal action against the staphylococcal reference strain and its bacteriostatic effect against clinical resistant strain in the HeLa cell line. In conclusion, due to its characterized content of polyphenolic compounds and antioxidant activity strength, the PPE could be considered as a therapeutic agent alone or in conjunction with standard antibiotics against challenging infections caused by ESKAPE pathogens.

SELECTION OF CITATIONS
SEARCH DETAIL
...