Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
PLOS Water ; 1(6)2022 Jun 15.
Article in English | MEDLINE | ID: mdl-38410139

ABSTRACT

Continuity of key water, sanitation, and hygiene (WASH) infrastructure and WASH practices-for example, hand hygiene-are among several critical community preventive and mitigation measures to reduce transmission of infectious diseases, including COVID-19 and other respiratory diseases. WASH guidance for COVID-19 prevention may combine existing WASH standards and new COVID-19 guidance. Many existing WASH tools can also be modified for targeted WASH assessments during the COVID-19 pandemic. We partnered with local organizations to develop and deploy tools to assess WASH conditions and practices and subsequently implement, monitor, and evaluate WASH interventions to mitigate COVID-19 in low- and middle-income countries in Latin America and the Caribbean and Africa, focusing on healthcare, community institution, and household settings and hand hygiene specifically. Employing mixed-methods assessments, we observed gaps in access to hand hygiene materials specifically despite most of those settings having access to improved, often onsite, water supplies. Across countries, adherence to hand hygiene among healthcare providers was about twice as high after patient contact compared to before patient contact. Poor or non-existent management of handwashing stations and alcohol-based hand rub (ABHR) was common, especially in community institutions. Markets and points of entry (internal or external border crossings) represent congregation spaces, critical for COVID-19 mitigation, where globally-recognized WASH standards are needed. Development, evaluation, deployment, and refinement of new and existing standards can help ensure WASH aspects of community mitigation efforts that remain accessible and functional to enable inclusive preventive behaviors.

2.
PLoS One ; 4(9): e6957, 2009 Sep 09.
Article in English | MEDLINE | ID: mdl-19742308

ABSTRACT

Increasing evidence points to an important role for hemozoin (HZ), the malaria pigment, in the immunopathology related to this infection. However, there is no consensus as to whether HZ exerts its immunostimulatory activity in absence of other parasite or host components. Contamination of native HZ preparations and the lack of a unified protocol to produce crystals that mimic those of Plasmodium HZ (PHZ) are major technical limitants when performing functional studies with HZ. In fact, the most commonly used methods generate a heterogeneous nanocrystalline material. Thus, it is likely that such aggregates do not resemble to PHZ and differ in their inflammatory properties. To address this issue, the present study was designed to establish whether synthetic HZ (sHZ) crystals produced by different methods vary in their morphology and in their ability to activate immune responses. We report a new method of HZ synthesis (the precise aqueous acid-catalyzed method) that yields homogeneous sHZ crystals (Plasmodium-like HZ) which are very similar to PHZ in their size and physicochemical properties. Importantly, these crystals are devoid of protein and DNA contamination. Of interest, structure-function studies revealed that the size and shape of the synthetic crystals influences their ability to activate inflammatory responses (e.g. nitric oxide, chemokine and cytokine mRNA) in vitro and in vivo. In summary, our data confirm that sHZ possesses immunostimulatory properties and underline the importance of verifying by electron microscopy both the morphology and homogeneity of the synthetic crystals to ensure that they closely resemble those of the parasite. Periodic quality control experiments and unification of the method of HZ synthesis are key steps to unravel the role of HZ in malaria immunopathology.


Subject(s)
Hemeproteins/metabolism , Immune System/drug effects , Plasmodium chabaudi/metabolism , Animals , Catalysis , Cell Line , Crystallization , Hemin/chemistry , Humans , Mice , Mice, Transgenic , Microscopy, Electron, Scanning , Models, Biological , Structure-Activity Relationship , X-Ray Diffraction
SELECTION OF CITATIONS
SEARCH DETAIL
...