Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Mol Gastroenterol Hepatol ; : 101366, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38815928

ABSTRACT

BACKGROUND & AIMS: Type 2 innate lymphoid cells (ILC2s) and interleukin-13 (IL-13) promote the onset of spasmolytic polypeptide-expressing metaplasia (SPEM) cells. However, little is known about molecular effects of IL-13 in SPEM cells. We now sought to establish a reliable organoid model, Meta1 gastroids, to model SPEM cells in vitro. We evaluated cellular and molecular effects of ILC2s and IL-13 on maturation and proliferation of SPEM cells. METHODS: We performed single-cell RNA sequencing to characterize Meta1 gastroids, which were derived from stomachs of Mist1-Kras transgenic mice that displayed pyloric metaplasia. Cell sorting was used to isolate activated ILC2s from stomachs of IL-13-tdTomato reporter mice treated with L635. Three-dimensional co-culture was used to determine the effects of ILC2s on Meta1 gastroids. Mouse normal or metaplastic (Meta1) and human metaplastic gastroids were cultured with IL-13 to evaluate cell responses. Air-Liquid Interface culture was performed to test long-term culture effects of IL-13. In silico analysis determined possible STAT6-binding sites in gene promoter regions. STAT6 inhibition was performed to corroborate STAT6 role in SPEM cells maturation. RESULTS: Meta1 gastroids showed the characteristics of SPEM cell lineages in vitro even after several passages. We demonstrated that co-culture with ILC2s or IL-13 treatment can induce phosphorylation of STAT6 in Meta1 and normal gastroids and promote the maturation and proliferation of SPEM cell lineages. IL-13 up-regulated expression of mucin-related proteins in human metaplastic gastroids. Inhibition of STAT6 blocked SPEM-related gene expression in Meta1 gastroids and maturation of SPEM in both normal and Meta1 gastroids. CONCLUSIONS: IL-13 promotes the maturation and proliferation of SPEM cells consistent with gastric mucosal regeneration.

2.
Cell Mol Gastroenterol Hepatol ; 17(5): 671-678, 2024.
Article in English | MEDLINE | ID: mdl-38342299

ABSTRACT

Numerous recent studies using single cell RNA sequencing and spatial transcriptomics have shown the vast cell heterogeneity, including epithelial, immune, and stromal cells, present in the normal human stomach and at different stages of gastric carcinogenesis. Fibroblasts within the metaplastic and dysplastic mucosal stroma represent key contributors to the carcinogenic microenvironment in the stomach. The heterogeneity of fibroblast populations is present in the normal stomach, but plasticity within these populations underlies their alterations in association with both metaplasia and dysplasia. In this review, we summarize and discuss efforts over the past several years to study the fibroblast components in human stomach from normal to metaplasia, dysplasia, and cancer. In the stomach, myofibroblast populations increase during late phase carcinogenesis and are a source of matrix proteins. PDGFRA-expressing telocyte-like cells are present in normal stomach and expand during metaplasia and dysplasia in close proximity with epithelial lineages, likely providing support for both normal and metaplastic progenitor niches. The alterations in fibroblast transcriptional signatures across the stomach carcinogenesis process indicate that fibroblast populations are likely as plastic as epithelial populations during the evolution of carcinogenesis.


Subject(s)
Gastric Mucosa , Stomach Neoplasms , Humans , Gastric Mucosa/metabolism , Stomach Neoplasms/genetics , Stomach Neoplasms/metabolism , Carcinogenesis/metabolism , Metaplasia/metabolism , Fibroblasts/metabolism , Tumor Microenvironment
3.
Gastroenterology ; 165(2): 374-390, 2023 08.
Article in English | MEDLINE | ID: mdl-37196797

ABSTRACT

BACKGROUND & AIMS: Elements of field cancerization, including atrophic gastritis, metaplasia, and dysplasia, promote gastric cancer development in association with chronic inflammation. However, it remains unclear how stroma changes during carcinogenesis and how the stroma contributes to progression of gastric preneoplasia. Here we investigated heterogeneity of fibroblasts, one of the most important elements in the stroma, and their roles in neoplastic transformation of metaplasia. METHODS: We used single-cell transcriptomics to evaluate the cellular heterogeneity of mucosal cells from patients with gastric cancer. Tissue sections from the same cohort and tissue microarrays were used to identify the geographical distribution of distinct fibroblast subsets. We further evaluated the role of fibroblasts from pathologic mucosa in dysplastic progression of metaplastic cells using patient-derived metaplastic gastroids and fibroblasts. RESULTS: We identified 4 subsets of fibroblasts within stromal cells defined by the differential expression of PDGFRA, FBLN2, ACTA2, or PDGFRB. Each subset was distributed distinctively throughout stomach tissues with different proportions at each pathologic stage. The PDGFRα+ subset expanded in metaplasia and cancer compared with normal, maintaining a close proximity with the epithelial compartment. Co-culture of metaplasia- or cancer-derived fibroblasts with gastroids showing the characteristics of spasmolytic polypeptide-expressing metaplasia-induced disordered growth, loss of metaplastic markers, and increases in markers of dysplasia. Culture of metaplastic gastroids with conditioned media from metaplasia- or cancer-derived fibroblasts also promoted dysplastic transition. CONCLUSIONS: These findings indicate that fibroblast associations with metaplastic epithelial cells can facilitate direct transition of metaplastic spasmolytic polypeptide-expressing metaplasia cell lineages into dysplastic lineages.


Subject(s)
Gastric Mucosa , Stomach Neoplasms , Humans , Gastric Mucosa/pathology , Stomach Neoplasms/pathology , Hyperplasia , Metaplasia/pathology , Fibroblasts/metabolism
4.
Cell Mol Gastroenterol Hepatol ; 13(1): 199-217, 2022.
Article in English | MEDLINE | ID: mdl-34455107

ABSTRACT

BACKGROUND & AIMS: Metaplasia in the stomach is highly associated with development of intestinal-type gastric cancer. Two types of metaplasias, spasmolytic polypeptide-expressing metaplasia (SPEM) and intestinal metaplasia (IM), are considered precancerous lesions. However, it remains unclear how SPEM and IM are related. Here we investigated a new lineage-specific marker for SPEM cells, aquaporin 5 (AQP5), to assist in the identification of these 2 metaplasias. METHODS: Drug- or Helicobacter felis (H felis) infection-induced mouse models were used to identify the expression pattern of AQP5 in acute or chronic SPEM. Gene-manipulated mice treated with or without drug were used to investigate how AQP5 expression is regulated in metaplastic lesions. Metaplastic samples from transgenic mice and human gastric cancer patients were evaluated for AQP5 expression. Immunostaining with lineage-specific markers was used to differentiate metaplastic gland characteristics. RESULTS: Our results revealed that AQP5 is a novel lineage-specific marker for SPEM cells that are localized at the base of metaplastic glands initially and expand to dominate glands after chronic H felis infection. In addition, AQP5 expression was up-regulated early in chief cell reprogramming and was promoted by interleukin 13. In humans, metaplastic corpus showed highly branched structures with AQP5-positive SPEM. Human SPEM cells strongly expressing AQP5 were present at the bases of incomplete IM glands marked by TROP2 but were absent from complete IM glands. CONCLUSIONS: AQP5-expressing SPEM cells are present in pyloric metaplasia and TROP2-positive incomplete IM and may be an important component of metaplasia that can predict a higher risk for gastric cancer development.


Subject(s)
Aquaporin 5 , Peptides , Animals , Aquaporin 5/genetics , Aquaporin 5/metabolism , Humans , Intercellular Signaling Peptides and Proteins , Metaplasia , Mice , Up-Regulation
SELECTION OF CITATIONS
SEARCH DETAIL
...