Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Neurochem Res ; 45(6): 1328-1334, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32144525

ABSTRACT

Glycolysis is the core of intermediate metabolism, an ancient pathway discovered in the heydays of classic biochemistry. A hundred years later, it remains a matter of active research, clinical interest and is not devoid of controversy. This review examines topical aspects of glycolysis in the brain, a tissue characterized by an extreme dependence on glucose. The limits of glycolysis are reviewed in terms of flux control by glucose transporters, intercellular lactate shuttling and activity-dependent glycolysis in astrocytes and neurons. What is the site of glycogen mobilization and aerobic glycolysis in brain tissue? We scrutinize the pervasive notions that glycolysis is fast and that catalysis is channeled through supramolecular assemblies. In brain tissue, most glycolytic enzymes are catalytically silent. What then is their function?


Subject(s)
Astrocytes/metabolism , Brain/metabolism , Glycogen/metabolism , Glycolysis/physiology , Lactic Acid/metabolism , Neurons/metabolism , Animals , Astrocytes/chemistry , Brain Chemistry/physiology , Energy Metabolism/physiology , Glucose/analysis , Glucose/metabolism , Glycogen/analysis , Humans , Lactic Acid/analysis , Neurons/chemistry , Time Factors
2.
J Biol Chem ; 294(52): 20135-20147, 2019 12 27.
Article in English | MEDLINE | ID: mdl-31719150

ABSTRACT

Monocarboxylate transporter 4 (MCT4) is an H+-coupled symporter highly expressed in metastatic tumors and at inflammatory sites undergoing hypoxia or the Warburg effect. At these sites, extracellular lactate contributes to malignancy and immune response evasion. Intriguingly, at 30-40 mm, the reported Km of MCT4 for lactate is more than 1 order of magnitude higher than physiological or even pathological lactate levels. MCT4 is not thought to transport pyruvate. Here we have characterized cell lactate and pyruvate dynamics using the FRET sensors Laconic and Pyronic. Dominant MCT4 permeability was demonstrated in various cell types by pharmacological means and by CRISPR/Cas9-mediated deletion. Respective Km values for lactate uptake were 1.7, 1.2, and 0.7 mm in MDA-MB-231 cells, macrophages, and HEK293 cells expressing recombinant MCT4. In MDA-MB-231 cells MCT4 exhibited a Km for pyruvate of 4.2 mm, as opposed to >150 mm reported previously. Parallel assays with the pH-sensitive dye 2',7'-bis-(carboxyethyl)-5-(and-6)-carboxyfluorescein (BCECF) indicated that previous Km estimates based on substrate-induced acidification were severely biased by confounding pH-regulatory mechanisms. Numerical simulation using revised kinetic parameters revealed that MCT4, but not the related transporters MCT1 and MCT2, endows cells with the ability to export lactate in high-lactate microenvironments. In conclusion, MCT4 is a high-affinity lactate transporter with physiologically relevant affinity for pyruvate.


Subject(s)
Lactic Acid/metabolism , Monocarboxylic Acid Transporters/metabolism , Muscle Proteins/metabolism , Biological Transport/drug effects , CRISPR-Cas Systems/genetics , Cell Line, Tumor , Diclofenac/pharmacology , Fluoresceins/chemistry , Gene Editing , HEK293 Cells , Humans , Hydrogen-Ion Concentration , Kinetics , Macrophages/cytology , Macrophages/metabolism , Monocarboxylic Acid Transporters/antagonists & inhibitors , Monocarboxylic Acid Transporters/genetics , Muscle Proteins/antagonists & inhibitors , Muscle Proteins/genetics , Protein Isoforms/antagonists & inhibitors , Protein Isoforms/genetics , Protein Isoforms/metabolism , Pyruvic Acid/metabolism
3.
PLoS One ; 14(10): e0224527, 2019.
Article in English | MEDLINE | ID: mdl-31671132

ABSTRACT

Mitochondrial toxicity is a primary source of pre-clinical drug attrition, black box warning and post-market drug withdrawal. Methods that detect mitochondrial toxicity as early as possible during the drug development process are required. Here we introduce a new method for detecting mitochondrial toxicity based on MDA-MB-231 cells stably expressing the genetically encoded FRET lactate indicator, Laconic. The method takes advantage of the high cytosolic lactate accumulation observed during mitochondrial stress, regardless of the specific toxicity mechanism, explained by compensatory glycolytic activation. Using a standard multi-well plate reader, dose-response curve experiments allowed the sensitivity of the methodology to detect metabolic toxicity induced by classical mitochondrial toxicants. Suitability for high-throughput screening applications was evaluated resulting in a Z'-factor > 0.5 and CV% < 20 inter-assay variability. A pilot screening allowed sensitive detection of commercial drugs that were previously withdrawn from the market due to liver/cardiac toxicity issues, such as camptothecin, ciglitazone, troglitazone, rosiglitazone, and terfenadine, in ten minutes. We envisage that the availability of this technology, based on a fluorescent genetically encoded indicator, will allow direct assessment of mitochondrial metabolism, and will make the early detection of mitochondrial toxicity in the drug development process possible, saving time and resources.


Subject(s)
High-Throughput Screening Assays/methods , Mitochondria/drug effects , Toxicity Tests/methods , Biological Assay , Cell Line , Fluorescence Resonance Energy Transfer/methods , Humans , Lactic Acid/metabolism , Sensitivity and Specificity
4.
J Neurosci Res ; 95(11): 2267-2274, 2017 11.
Article in English | MEDLINE | ID: mdl-28150866

ABSTRACT

Recent articles have drawn renewed attention to the housekeeping glucose transporter GLUT1 and its possible involvement in neurodegenerative diseases. Here we provide an updated analysis of brain glucose transport and the cellular mechanisms involved in its acute modulation during synaptic activity. We discuss how the architecture of the blood-brain barrier and the low concentration of glucose within neurons combine to make endothelial/glial GLUT1 the master controller of neuronal glucose utilization, while the regulatory role of the neuronal glucose transporter GLUT3 emerges as secondary. The near-critical condition of glucose dynamics in the brain suggests that subtle deficits in GLUT1 function or its activity-dependent control by neurons may contribute to neurodegeneration. © 2017 Wiley Periodicals, Inc.


Subject(s)
Brain/metabolism , Glucose Transporter Type 1/metabolism , Glucose/metabolism , Neurodegenerative Diseases/metabolism , Neurons/metabolism , Animals , Brain/pathology , Energy Metabolism/physiology , Glucose Transporter Type 1/deficiency , Humans , Neurodegenerative Diseases/pathology , Neurons/pathology
5.
Proc Natl Acad Sci U S A ; 112(35): 11090-5, 2015 Sep 01.
Article in English | MEDLINE | ID: mdl-26286989

ABSTRACT

Neural activity is accompanied by a transient mismatch between local glucose and oxygen metabolism, a phenomenon of physiological and pathophysiological importance termed aerobic glycolysis. Previous studies have proposed glutamate and K(+) as the neuronal signals that trigger aerobic glycolysis in astrocytes. Here we used a panel of genetically encoded FRET sensors in vitro and in vivo to investigate the participation of NH4(+), a by-product of catabolism that is also released by active neurons. Astrocytes in mixed cortical cultures responded to physiological levels of NH4(+) with an acute rise in cytosolic lactate followed by lactate release into the extracellular space, as detected by a lactate-sniffer. An acute increase in astrocytic lactate was also observed in acute hippocampal slices exposed to NH4(+) and in the somatosensory cortex of anesthetized mice in response to i.v. NH4(+). Unexpectedly, NH4(+) had no effect on astrocytic glucose consumption. Parallel measurements showed simultaneous cytosolic pyruvate accumulation and NADH depletion, suggesting the involvement of mitochondria. An inhibitor-stop technique confirmed a strong inhibition of mitochondrial pyruvate uptake that can be explained by mitochondrial matrix acidification. These results show that physiological NH4(+) diverts the flux of pyruvate from mitochondria to lactate production and release. Considering that NH4(+) is produced stoichiometrically with glutamate during excitatory neurotransmission, we propose that NH4(+) behaves as an intercellular signal and that pyruvate shunting contributes to aerobic lactate production by astrocytes.


Subject(s)
Ammonium Compounds/metabolism , Astrocytes/metabolism , Lactic Acid/metabolism , Mitochondria/metabolism , Pyruvic Acid/metabolism , Animals , Mice
6.
J Neurosci ; 35(10): 4168-78, 2015 Mar 11.
Article in English | MEDLINE | ID: mdl-25762664

ABSTRACT

Excitatory synaptic transmission is accompanied by a local surge in interstitial lactate that occurs despite adequate oxygen availability, a puzzling phenomenon termed aerobic glycolysis. In addition to its role as an energy substrate, recent studies have shown that lactate modulates neuronal excitability acting through various targets, including NMDA receptors and G-protein-coupled receptors specific for lactate, but little is known about the cellular and molecular mechanisms responsible for the increase in interstitial lactate. Using a panel of genetically encoded fluorescence nanosensors for energy metabolites, we show here that mouse astrocytes in culture, in cortical slices, and in vivo maintain a steady-state reservoir of lactate. The reservoir was released to the extracellular space immediately after exposure of astrocytes to a physiological rise in extracellular K(+) or cell depolarization. Cell-attached patch-clamp analysis of cultured astrocytes revealed a 37 pS lactate-permeable ion channel activated by cell depolarization. The channel was modulated by lactate itself, resulting in a positive feedback loop for lactate release. A rapid fall in intracellular lactate levels was also observed in cortical astrocytes of anesthetized mice in response to local field stimulation. The existence of an astrocytic lactate reservoir and its quick mobilization via an ion channel in response to a neuronal cue provides fresh support to lactate roles in neuronal fueling and in gliotransmission.


Subject(s)
Astrocytes/drug effects , Ion Channels/physiology , Lactic Acid/metabolism , Potassium/pharmacology , Animals , Animals, Newborn , Barium/pharmacology , Cadmium/pharmacology , Cells, Cultured , Cerebral Cortex/cytology , Female , Fluoresceins/metabolism , Glycogen/metabolism , Humans , In Vitro Techniques , Ion Channels/drug effects , Ions/pharmacology , Membrane Potentials/drug effects , Membrane Potentials/physiology , Mice , Mice, Inbred C57BL , Neurons/drug effects , Neurons/physiology , Pyruvic Acid/pharmacology , Somatosensory Cortex/cytology , Somatosensory Cortex/physiology , Transfection
7.
PLoS One ; 9(1): e85780, 2014.
Article in English | MEDLINE | ID: mdl-24465702

ABSTRACT

Mitochondrial flux is currently accessible at low resolution. Here we introduce a genetically-encoded FRET sensor for pyruvate, and methods for quantitative measurement of pyruvate transport, pyruvate production and mitochondrial pyruvate consumption in intact individual cells at high temporal resolution. In HEK293 cells, neurons and astrocytes, mitochondrial pyruvate uptake was saturated at physiological levels, showing that the metabolic rate is determined by intrinsic properties of the organelle and not by substrate availability. The potential of the sensor was further demonstrated in neurons, where mitochondrial flux was found to rise by 300% within seconds of a calcium transient triggered by a short theta burst, while glucose levels remained unaltered. In contrast, astrocytic mitochondria were insensitive to a similar calcium transient elicited by extracellular ATP. We expect the improved resolution provided by the pyruvate sensor will be of practical interest for basic and applied researchers interested in mitochondrial function.


Subject(s)
Biosensing Techniques , Fluorescence Resonance Energy Transfer , Mitochondria/metabolism , Molecular Imaging/methods , Pyruvic Acid/metabolism , Single-Cell Analysis/methods , Animals , Bacterial Proteins/metabolism , Brain/cytology , Brain/metabolism , Cytosol/metabolism , Escherichia coli Proteins/metabolism , Glycolysis , Green Fluorescent Proteins/metabolism , HEK293 Cells , Humans , Luminescent Proteins/metabolism , Male , Mammals , Mice , Mice, Inbred C57BL , Repressor Proteins/metabolism , Transcription, Genetic
8.
Neurophotonics ; 1(1): 011004, 2014 Jul.
Article in English | MEDLINE | ID: mdl-26157964

ABSTRACT

Neurophotonics comes to light at a time in which advances in microscopy and improved calcium reporters are paving the way toward high-resolution functional mapping of the brain. This review relates to a parallel revolution in metabolism. We argue that metabolism needs to be approached both in vitro and in vivo, and that it does not just exist as a low-level platform but is also a relevant player in information processing. In recent years, genetically encoded fluorescent nanosensors have been introduced to measure glucose, glutamate, ATP, NADH, lactate, and pyruvate in mammalian cells. Reporting relative metabolite levels, absolute concentrations, and metabolic fluxes, these sensors are instrumental for the discovery of new molecular mechanisms. Sensors continue to be developed, which together with a continued improvement in protein expression strategies and new imaging technologies, herald an exciting era of high-resolution characterization of metabolism in the brain and other organs.

SELECTION OF CITATIONS
SEARCH DETAIL
...