Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 14(7): e0219481, 2019.
Article in English | MEDLINE | ID: mdl-31314811

ABSTRACT

OBJECTIVES: To study the differences in the levels of nitrogen metabolites, such as ammonia and nitric oxide and the correlations existing among them in both red blood cells (RBCs) and serum, as well as the possible differences by gender in healthy subjects and patients with type 2 Diabetes Mellitus (DM). DESIGN AND METHODS: This cross-sectional study included 80 patients diagnosed with type 2 DM (40 female and 40 male patients) and their corresponding controls paired by gender (40 female and 40 male). We separated serum and RBC and determined metabolites mainly through colorimetric and spectrophotometric assays. We evaluated changes in the levels of the main catabolic by-products of blood nitrogen metabolism, nitric oxide (NO), and malondialdehyde (MDA). RESULTS: Healthy female and male controls showed a differential distribution of blood metabolites involved in NO metabolism and arginine metabolism for the ornithine and urea formation. Patients with DM had increased ammonia, citrulline, urea, uric acid, and ornithine, mainly in the RBCs, whereas the level of arginine was significantly lower in men with type 2 DM. These findings were associated with hyperglycemia, glycosylated hemoglobin (Hb A1C), and levels of RBC's MDA. Furthermore, most of the DM-induced alterations in nitrogen-related metabolites appear to be associated with a difference in the RBC capacity for the release of these metabolites, thereby causing an abrogation of the gender-related differential management of nitrogen metabolites in healthy subjects. CONCLUSIONS: We found evidence of a putative role of RBC as an extra-hepatic mechanism for controlling serum levels of nitrogen-related metabolites, which differs according to gender in healthy subjects. Type 2 DM promotes higher ammonia, citrulline, and MDA blood levels, which culminate in a loss of the differential management of nitrogen-related metabolites seen in healthy women and men.


Subject(s)
Ammonia/metabolism , Arginine/metabolism , Diabetes Mellitus, Type 2/blood , Erythrocytes/metabolism , Oxidative Stress , Sex Factors , Colorimetry , Cross-Sectional Studies , Female , Humans , Male , Malondialdehyde/metabolism , Nitric Oxide/metabolism , Nitrogen/blood , Spectrophotometry
2.
Eur J Cancer ; 57: 50-7, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26870895

ABSTRACT

BACKGROUND: Gastric cancer is one of the main causes of global mortality. Here, reactive oxygen species (ROS) could largely contribute to gastric carcinogenesis. Hence, the present work was aimed to assess the role of ROS, oxidant status, NADPH oxidases (NOXs) expression, during human gastric adenocarcinoma. METHODS: We obtained subcellular fraction from samples of gastric mucosa taken from control subjects (n = 20), and from 40 patients with gastric adenocarcinoma, as well as samples of distant areas (tumour-free gastric mucosa). RESULTS: Parameters indicative of lipid peroxidation and cell proliferation were selectively increased in both tumour-free and in cancerous gastric mucosa, despite of glutathione (GSH) content, glutathione reductase (GR) and superoxide dismutase (SOD) activities were increased in the adenocarcinoma. These high levels of antioxidant defences inversely correlated with down-regulated expression for NOX2 and 4; however, over-expression of NOX1 occurred with increased caspase-3 activity and overexpressed checkpoint 1 (MDC1) and cyclin D1 proteins. In the tumour-free mucosa an oxidant stress took place, without changing total GSH but with decreased activities for GR and mitochondrial SOD; moreover, over-expression of checkpoint 1 (MDC1) correlated with lower NOX2 and 4 expression in this mucosa. CONCLUSIONS: Chronically injured gastric mucosa increases lipoperoxidative events and cell proliferation. In the adenocarcinoma, cell proliferation was further enhanced, oxidant stress decreased which seemed to be linked to NOX1, MDC1 and cyclin D1 over-expression, but with a lower NOXs activity leading a 'low tone' of ROS formation. Therefore, our results could be useful for early detection and treatment of gastric adenocarcinoma.


Subject(s)
Adenocarcinoma/enzymology , Cyclin D1/metabolism , NADPH Oxidases/physiology , Protein Kinases/metabolism , Stomach Neoplasms/enzymology , Antioxidants/metabolism , Apoptosis/physiology , Case-Control Studies , Caspases/metabolism , Cell Proliferation/physiology , Checkpoint Kinase 1 , Female , Gastric Mucosa/enzymology , Humans , Male , Oxidants/metabolism , Oxidative Stress/physiology , Reactive Oxygen Species/metabolism
3.
J Biol Chem ; 278(37): 34975-82, 2003 Sep 12.
Article in English | MEDLINE | ID: mdl-12826671

ABSTRACT

Escherichia coli possesses a two-domain flavohemoglobin, Hmp, implicated in nitric oxide (NO) detoxification. To determine the contribution of each domain of Hmp toward NO detoxification, we genetically engineered the Hmp protein and separately expressed the heme (HD) and the flavin (FD) domains in a defined hmp mutant. Expression of each domain was confirmed by Western blot analysis. CO-difference spectra showed that the HD of Hmp can bind CO, but the CO adduct showed a slightly blue-shifted peak. Overexpression of the HD resulted in an improvement of growth to a similar extent to that observed with the Vitreoscilla hemeonly globin Vgb, whereas the FD alone did not improve growth. Viability of the hmp mutant in the presence of lethal concentrations of sodium nitroprusside was increased (to 30% survival after 2 h in 5 mM sodium nitroprusside) by overexpressing Vgb or the HD. However, maximal protection was provided only by holo-Hmp (75% survival under the same conditions). Cellular respiration of the hmp mutant was instantaneously inhibited in the presence of 13.5 microM NO but remained insensitive to NO inhibition when these cells overexpressed Hmp. When HD or FD was expressed separately, no significant protection was observed. By contrast, overexpression of Vgb provided partial protection from NO respiratory inhibition. Our results suggest that, despite the homology between the HD from Hmp and Vgb (45% identity), their roles seem to be quite distinct.


Subject(s)
Dihydropteridine Reductase/physiology , Escherichia coli Proteins/physiology , Escherichia coli/metabolism , Heme/metabolism , Hemeproteins/physiology , NADH, NADPH Oxidoreductases/physiology , Nitric Oxide/pharmacology , Nitroprusside/pharmacology , Oxygen Consumption/drug effects , Amino Acid Sequence , Binding Sites , Carbon Monoxide/metabolism , Cell-Free System , Dihydropteridine Reductase/chemistry , Escherichia coli/drug effects , Escherichia coli/genetics , Escherichia coli Proteins/chemistry , Genotype , Hemeproteins/chemistry , Kinetics , Molecular Sequence Data , NADH, NADPH Oxidoreductases/chemistry , Peptide Fragments/physiology , Sequence Alignment , Sequence Homology, Amino Acid
SELECTION OF CITATIONS
SEARCH DETAIL
...