Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Multisens Res ; 32(1): 67-85, 2019 01 01.
Article in English | MEDLINE | ID: mdl-31059492

ABSTRACT

In both audition and touch, sensory cues comprising repeating events are perceived either as a continuous signal or as a stream of temporally discrete events (flutter), depending on the events' repetition rate. At high repetition rates (>100 Hz), auditory and tactile cues interact reciprocally in pitch processing. The frequency of a cue experienced in one modality systematically biases the perceived frequency of a cue experienced in the other modality. Here, we tested whether audition and touch also interact in the processing of low-frequency stimulation. We also tested whether multisensory interactions occurred if the stimulation in one modality comprised click trains and the stimulation in the other modality comprised amplitude-modulated signals. We found that auditory cues bias touch and tactile cues bias audition on a flutter discrimination task. Even though participants were instructed to attend to a single sensory modality and ignore the other cue, the flutter rate in the attended modality is perceived to be similar to that of the distractor modality. Moreover, we observed similar interaction patterns regardless of stimulus type and whether the same stimulus types were experienced by both senses. Combined with earlier studies, our results suggest that the nervous system extracts and combines temporal rate information from multisensory environmental signals, regardless of stimulus type, in both the low- and high temporal frequency domains. This function likely reflects the importance of temporal frequency as a fundamental feature of our multisensory experience.


Subject(s)
Discrimination, Psychological/physiology , Touch Perception/physiology , Touch/physiology , Visual Perception/physiology , Acoustic Stimulation/methods , Auditory Perception/physiology , Electroencephalography , Female , Humans , Male , Vibration , Young Adult
2.
Eur J Neurosci ; 47(11): 1289-1302, 2018 06.
Article in English | MEDLINE | ID: mdl-29753310

ABSTRACT

In the rubber hand illusion (RHI), the feeling that a fake hand belongs to oneself can be induced by the simultaneous, congruent touch of the fake visible hand and one's own hidden hand. This condition is also associated with a recalibration of the perceived location of the real hand. A cortical network, including premotor and temporo-parietal areas, has been proposed as the basis of the RHI. However, the causal contribution of these areas to the discrete illusory components remains unclear. We used transcranial direct current stimulation (tDCS) to assess the contribution of the right premotor cortex (rPMc) and the right temporo-parietal junction (rTPJ) to the RHI and explored the role of these areas in modulating the subjective experience of embodiment and the misperception of the hand position. We found that anodal tDCS of both rPMc and rTPJ increased the misjudgement of the real hand location towards the fake hand. Crucially, the difference in proprioceptive displacement evoked by the congruent and incongruent visuo-tactile stroking was minimised when tDCS was applied over the rPMc, while it was amplified when the rTPJ was targeted. The parietal effects of tDCS also extended to the self-report components of the RHI. These findings suggest that the tDCS of rTPJ modulates the RHI depending on the temporal congruency of the visuo-tactile stimulation, while the tDCS of rPMc induces a general recalibration of hand coordinates, regardless of the visuo-tactile congruency. The present results are discussed in the view of a multicomponent model of the RHI.


Subject(s)
Body Image , Hand , Illusions/physiology , Motor Cortex/physiology , Parietal Lobe/physiology , Proprioception/physiology , Space Perception/physiology , Temporal Lobe/physiology , Touch Perception/physiology , Visual Perception/physiology , Adolescent , Adult , Female , Humans , Male , Middle Aged , Transcranial Direct Current Stimulation , Young Adult
3.
Curr Biol ; 28(5): 746-752.e5, 2018 03 05.
Article in English | MEDLINE | ID: mdl-29456139

ABSTRACT

Sensory cortical systems often activate in parallel, even when stimulation is experienced through a single sensory modality [1-3]. Co-activations may reflect the interactive coupling between information-linked cortical systems or merely parallel but independent sensory processing. We report causal evidence consistent with the hypothesis that human somatosensory cortex (S1), which co-activates with auditory cortex during the processing of vibrations and textures [4-9], interactively couples to cortical systems that support auditory perception. In a series of behavioral experiments, we used transcranial magnetic stimulation (TMS) to probe interactions between the somatosensory and auditory perceptual systems as we manipulated attention state. Acute TMS over S1 impairs auditory frequency perception when subjects simultaneously attend to auditory and tactile frequency, but not when attention is directed to audition alone. Auditory frequency perception is unaffected by TMS over visual cortex, thus confirming the privileged interactions between the somatosensory and auditory systems in temporal frequency processing [10-13]. Our results provide a key demonstration that selective attention can modulate the functional properties of cortical systems thought to support specific sensory modalities. The gating of crossmodal coupling by selective attention may critically support multisensory interactions and feature-specific perception.


Subject(s)
Attention/physiology , Auditory Cortex/physiology , Auditory Perception/physiology , Somatosensory Cortex/physiology , Touch Perception/physiology , Adult , Female , Humans , Male , Transcranial Magnetic Stimulation , Young Adult
4.
Neuropsychologia ; 87: 134-143, 2016 07 01.
Article in English | MEDLINE | ID: mdl-27197073

ABSTRACT

Recent neuropsychological evidence suggests that acquired brain lesions can, in some instances, abolish the ability to integrate inputs from different sensory modalities, disrupting multisensory perception. We explored the ability to perceive multisensory events, in particular the integrity of audio-visual processing in the temporal domain, in brain-damaged patients with visual field defects (VFD), or with unilateral spatial neglect (USN), by assessing their sensitivity to the 'Sound-Induced Flash Illusion' (SIFI). The study yielded two key findings. Firstly, the 'fission' illusion (namely, seeing multiple flashes when a single flash is paired with multiple sounds) is reduced in both left- and right-brain-damaged patients with VFD, but not in right-brain-damaged patients with left USN. The disruption of the fission illusion is proportional to the extent of the occipital damage. Secondly, a reliable 'fusion' illusion (namely, seeing less flashes when a single sound is paired with multiple flashes) is evoked in USN patients, but neither in VFD patients nor in healthy participants. A control experiment showed that the fusion, but not the fission, illusion is lost in older participants (>50 year-old), as compared with younger healthy participants (<30 year-old). This evidence indicates that the fission and fusion illusions are dissociable multisensory phenomena, altered differently by impairments of visual perception (i.e. VFD) and spatial attention (i.e. USN). The occipital cortex represents a key cortical site for binding auditory and visual stimuli in the SIFI, while damage to right-hemisphere areas mediating spatial attention and awareness does not prevent the integration of audio-visual inputs in the temporal domain.


Subject(s)
Auditory Perception/physiology , Brain/physiopathology , Illusions/physiology , Perceptual Disorders/physiopathology , Visual Perception/physiology , Acoustic Stimulation/methods , Adult , Aged , Aged, 80 and over , Aging/physiology , Attention/physiology , Cerebrovascular Disorders/complications , Cerebrovascular Disorders/physiopathology , Female , Functional Laterality , Humans , Male , Middle Aged , Neuropsychological Tests , Perceptual Disorders/etiology , Photic Stimulation/methods , Space Perception/physiology
5.
Neurosci Lett ; 609: 87-91, 2015 Nov 16.
Article in English | MEDLINE | ID: mdl-26463671

ABSTRACT

Human movements conform to specific kinematic laws of motion. One of such laws, the "two-thirds power law", describes the systematic co-variation between curvature and velocity of body movements. Noticeably, the same law also influences the perception of moving stimuli: the velocity of a dot moving along a curvilinear trajectory is perceived as uniform when the dot kinematics complies with the two-thirds power law. Instead, if the dot moves at constant speed, its velocity is perceived as highly non-uniform. This dynamic visual illusion points to a strong coupling between action and perception; however, how this coupling is implemented in the brain remains elusive. In this study, we tested whether the premotor cortex (PM) and the primary visual cortex (V1) play a role in the illusion by means of transcranial Direct Current Stimulation (tDCS). All participants underwent three tDCS sessions during which they received active or sham cathodal tDCS (1.5mA) over PM or V1 of the left hemisphere. During tDCS, participants were required to adjust the velocity of a dot moving along an elliptical trajectory until it looked uniform across the whole trajectory. Results show that occipital tDCS decreases the illusion variability both within and across participants, as compared to sham tDCS. This means that V1 stimulation increases individual sensitivity to the illusory motion and also increases coherence across different observers. Conversely, the illusion seems resistant to tDCS in terms of its magnitude, with cathodal stimulation of V1 or PM not affecting the amount of the illusory effect. Our results provide evidence for strong visuo-motor coupling in visual perception: the velocity of a dot moving along an elliptical trajectory is perceived as uniform only when its kinematics closely complies to the same law of motion that constrains human movement production. Occipital stimulation by cathodal tDCS can stabilize such illusory percept.


Subject(s)
Illusions , Motion Perception , Transcranial Direct Current Stimulation , Adult , Biomechanical Phenomena , Electrodes , Female , Humans , Male , Motor Cortex/physiology , Psychomotor Performance , Visual Cortex/physiology , Young Adult
6.
Brain ; 138(Pt 2): 428-39, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25481002

ABSTRACT

Limb apraxia, a deficit of planning voluntary gestures, is most frequently caused by damage to the left hemisphere, where, according to an influential neurofunctional model, gestures are planned, before being executed through the motor cortex of the hemisphere contralateral to the acting hand. We used anodal transcranial direct current stimulation delivered to the left posterior parietal cortex (PPC), the right motor cortex (M1), and a sham stimulation condition, to modulate the ability of six left-brain-damaged patients with ideomotor apraxia, and six healthy control subjects, to imitate hand gestures, and to perform skilled hand movements using the left hand. Transcranial direct current stimulation delivered to the left PPC reduced the time required to perform skilled movements, and planning, but not execution, times in imitating gestures, in both patients and controls. In patients, the amount of decrease of planning times brought about by left PPC transcranial direct current stimulation was influenced by the size of the parietal lobe damage, with a larger parietal damage being associated with a smaller improvement. Of interest from a clinical perspective, left PPC stimulation also ameliorated accuracy in imitating hand gestures in patients. Instead, transcranial direct current stimulation to the right M1 diminished execution, but not planning, times in both patients and healthy controls. In conclusion, by using a transcranial stimulation approach, we temporarily improved ideomotor apraxia in the left hand of left-brain-damaged patients, showing a role of the left PPC in planning gestures. This evidence opens up novel perspectives for the use of transcranial direct current stimulation in the rehabilitation of limb apraxia.


Subject(s)
Apraxia, Ideomotor/therapy , Parietal Lobe , Transcranial Direct Current Stimulation/methods , Activities of Daily Living , Aged , Apraxia, Ideomotor/psychology , Executive Function , Female , Functional Laterality , Gestures , Humans , Male , Middle Aged , Motor Cortex , Psychomotor Performance , Speech , Stroke/therapy
7.
Cortex ; 58: 99-111, 2014 Sep.
Article in English | MEDLINE | ID: mdl-24998337

ABSTRACT

Despite transcranial direct current stimulation (tDCS) is increasingly used in experimental and clinical settings, its precise mechanisms of action remain largely unknown. At a neuronal level, tDCS modulates the resting membrane potential in a polarity-dependent fashion: anodal stimulation increases cortical excitability in the stimulated region, while cathodal decreases it. So far, the neurophysiological underpinnings of the immediate and delayed effects of tDCS, and to what extent the stimulation of a given cerebral region may affect the activity of anatomically connected regions, remain unclear. In the present study, we used a combination of Transcranial Magnetic Stimulation (TMS) and Electroencephalography (EEG) in order to explore local and global cortical excitability modulation during and after active and sham tDCS. Single pulse TMS was delivered over the left posterior parietal cortex (PPC), before, during, and after 15 min of tDCS over the right PPC, while EEG was recorded from 60 channels. For each session, indexes of global and local cerebral excitability were obtained, computed as global and local mean field power (Global Mean Field Power, GMFP and Local Mean Field Power, LMFP) on mean TMS-evoked potentials (TEPs) for three temporal windows: 0-50, 50-100, and 100-150 msec. The global index was computed on all 60 channels. The local indexes were computed in six clusters of electrodes: left and right in frontal, parietal and temporal regions. GMFP increased, compared to baseline, both during and after active tDCS in the 0-100 msec temporal window. LMFP increased after the end of stimulation in parietal and frontal clusters bilaterally, while no difference was found in the temporal clusters. In sum, a diffuse rise of cortical excitability occurred, both during and after active tDCS. This evidence highlights the spreading of the effects of anodal tDCS over remote cortical regions of stimulated and contralateral hemispheres.


Subject(s)
Electroencephalography , Evoked Potentials, Motor/physiology , Motor Cortex/physiology , Parietal Lobe/physiology , Transcranial Magnetic Stimulation , Adult , Female , Humans , Male , Young Adult
8.
Cortex ; 57: 51-9, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24769545

ABSTRACT

Transcranial direct current stimulation (tDCS) is a non-invasive tool, which effectively modulates behavior, and related brain activity. When applied to the primary motor cortex (M1), tDCS affects motor function, enhancing or decreasing performance of both healthy participants and brain-damaged patients. Beyond M1, the posterior parietal cortex (PPC) is also crucially involved in controlling and guiding movement. Therefore, we explored whether the modulation of cortical excitability within PPC can also affect hand motor function in healthy right-handed participants. In Experiment 1, anodal tDCS (2 mA, 10 min) was applied to PPC and to M1 of both hemispheres. Skilled motor function of the non-dominant left hand, measured using the Jebsen-Taylor Hand Function Test (JTT), improved after anodal tDCS of the right, contralateral M1, as well as after the anodal stimulation of the left, ipsilateral PPC. Conversely, in Experiment 2, cathodal tDCS of the left PPC, or of the right M1, reduced motor performance of the left hand. Finally, Experiment 3 shows that the anodal tDCS of the left PPC selectively facilitated action planning, while the anodal tDCS of the right M1 modulated action execution only. This evidence shows that motor improvement induced by left parietal and right motor stimulations relies on substantial different mechanisms, opening up novel perspectives in the neurorehabilitation of stroke patients with motor and apraxic disorders.


Subject(s)
Brain Mapping , Evoked Potentials, Motor/physiology , Executive Function/physiology , Hand/physiology , Motor Activity , Motor Cortex/physiology , Movement/physiology , Adolescent , Adult , Electric Stimulation/methods , Female , Humans , Male , Motor Activity/physiology , Transcranial Magnetic Stimulation/methods , Young Adult
9.
Exp Brain Res ; 231(4): 469-78, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24091771

ABSTRACT

Crossmodal illusions clearly show how perception, rather than being a modular and self-contained function, can be dramatically altered by interactions between senses. Here, we provide evidence for a novel crossmodal "physiological" illusion, showing that sounds can boost visual cortical responses in such a way to give rise to a striking illusory visual percept. In healthy participants, a single-pulse transcranial magnetic stimulation (sTMS) delivered to the occipital cortex evoked a visual percept, i.e., a phosphene. When sTMS is accompanied by two auditory beeps, the second beep induces in neurologically unimpaired participants the perception of an illusory second phosphene, namely the sound-induced phosphene illusion. This perceptual "fission" of a single phosphene, due to multiple beeps, is not matched by a "fusion" of double phosphenes due to a single beep, and it is characterized by an early auditory modulation of the TMS-induced visual responses (~80 ms). Multiple beeps also induce an illusory feeling of multiple TMS pulses on the participants' scalp, consistent with an audio-tactile fission illusion. In conclusion, an auditory stimulation may bring about a phenomenological change in the conscious visual experience produced by the transcranial stimulation of the occipital cortex, which reveals crossmodal binding mechanisms within early stages of visual processing.


Subject(s)
Auditory Perception/physiology , Illusions/physiology , Occipital Lobe/physiology , Phosphenes/physiology , Transcranial Magnetic Stimulation/methods , Visual Perception/physiology , Adult , Female , Humans , Male , Transcranial Magnetic Stimulation/instrumentation , Visual Cortex/physiology , Young Adult
10.
J Neurosci ; 33(9): 4201-5, 2013 Feb 27.
Article in English | MEDLINE | ID: mdl-23447627

ABSTRACT

Brain imaging studies in humans have shown the existence of a shared somatosensory representation in the primary somatosensory cortex (S1), putatively involved in understanding others' sensations (Keysers et al., 2010); however, the role of S1 in such a high-level process is still unknown. To ascertain the causal involvement of S1, and its possible hemispheric lateralization, in encoding the affective valence of emotional scenes, depicting, or not, a tactile event, we gave to healthy participants a picture-based affective go/no-go task and low-frequency repetitive transcranial magnetic stimulation (rTMS). The dorsolateral prefrontal cortex (DLPFC) was chosen as control site. rTMS over the right, but not the left, S1 selectively increased the participants' latencies in the affective go/no-go task, but only when the affective state was conveyed by touch; intriguingly, this interfering effect was associated with the empathic ability to adopt the subjective perspective of others. The left, not the right, DLPFC is also involved in affective go/no-go performance, but regardless of the sight of touch, and independently of empathic abilities. This novel evidence demonstrates the crossmodal role of right S1 in encoding the pleasant and aversive consequences of others' sensations evoked by touch.


Subject(s)
Emotions/physiology , Functional Laterality/physiology , Interpersonal Relations , Somatosensory Cortex/physiology , Touch/physiology , Adult , Analysis of Variance , Brain Mapping , Female , Humans , Image Processing, Computer-Assisted , Linear Models , Magnetic Resonance Imaging , Male , Oxygen/blood , Photic Stimulation , Reaction Time/physiology , Somatosensory Cortex/blood supply , Transcranial Magnetic Stimulation , Young Adult
11.
J Cogn Neurosci ; 25(5): 685-96, 2013 May.
Article in English | MEDLINE | ID: mdl-23249351

ABSTRACT

Merging information derived from different sensory channels allows the brain to amplify minimal signals to reduce their ambiguity, thereby improving the ability of orienting to, detecting, and identifying environmental events. Although multisensory interactions have been mostly ascribed to the activity of higher-order heteromodal areas, multisensory convergence may arise even in primary sensory-specific areas located very early along the cortical processing stream. In three experiments, we investigated early multisensory interactions in lower-level visual areas, by using a novel approach, based on the coupling of behavioral stimulation with two noninvasive brain stimulation techniques, namely, TMS and transcranial direct current stimulation (tDCS). First, we showed that redundant multisensory stimuli can increase visual cortical excitability, as measured by means of phosphene induction by occipital TMS; such physiological enhancement is followed by a behavioral facilitation through the amplification of signal intensity in sensory-specific visual areas. The more sensory inputs are combined (i.e., trimodal vs. bimodal stimuli), the greater are the benefits on phosphene perception. Second, neuroelectrical activity changes induced by tDCS in the temporal and in the parietal cortices, but not in the occipital cortex, can further boost the multisensory enhancement of visual cortical excitability, by increasing the auditory and tactile inputs from temporal and parietal regions, respectively, to lower-level visual areas.


Subject(s)
Color Perception/physiology , Evoked Potentials, Visual/physiology , Visual Cortex/physiology , Adult , Analysis of Variance , Electroencephalography , Female , Functional Laterality , Humans , Male , Pattern Recognition, Visual , Photic Stimulation , Reaction Time/physiology , Transcranial Magnetic Stimulation , Young Adult
12.
Neurosci Biobehav Rev ; 37(3): 269-78, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23253947

ABSTRACT

Current neuropsychological evidence demonstrates that damage to sensory-specific and heteromodal areas of the brain not only disrupts the ability of combining sensory information from multiple sources, but can also cause altered multisensory experiences. On the other hand, there is also evidence of behavioural benefits induced by spared multisensory mechanisms. Thus, crossmodal plasticity can be viewed in both an adaptive and maladaptive context. The emerging view is that different crossmodal plastic changes can result following damage to sensory-specific and heteromodal areas, with post-injury crossmodal plasticity representing an attempt of a multisensory system to reconnect the various senses and by-pass injured areas. Changes can be considered adaptive when there is compensation for the lesion-induced sensory impairment. Conversely, it may prove maladaptive when atypical or even illusory multisensory experiences are generated as a result of re-arranged multisensory networks. This theoretical framework posits new intriguing questions for neuropsychological research and places greater emphasis on the study of multisensory phenomena within the context of damage to large-scale brain networks, rather than just focal damage alone.


Subject(s)
Brain Injuries/physiopathology , Neuronal Plasticity/physiology , Sensation/physiology , Animals , Brain Injuries/psychology , Humans , Nerve Net , Perception/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...