Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Air Waste Manag Assoc ; 52(3): 259-72, 2002 Mar.
Article in English | MEDLINE | ID: mdl-11924857

ABSTRACT

A laboratory study was conducted to evaluate the potential for secondary organic aerosol formation from emissions from automotive exhaust. The goal was to determine to what extent photochemical oxidation products of these hydrocarbons contribute to secondary organic aerosol (SOA) and how well their formation is described by recently developed models for SOA formation. The quality of a surrogate was tested by comparing its reactivity with that from irradiations of authentic automobile exhaust. Experiments for secondary particle formation using the surrogate were conducted in a fixed volume reactor operated in a dynamic mode. The mass concentration of the aerosol was determined from measurements of organic carbon collected on quartz filters and was corrected for the presence of hydrogen, nitrogen, and oxygen atoms in the organic species. A functional group analysis of the aerosol made by Fourier transform infrared (FTIR) spectroscopy indicated


Subject(s)
Hydrocarbons, Aromatic/chemistry , Ultraviolet Rays , Vehicle Emissions , Aerosols , Cities , Organic Chemicals , Oxidation-Reduction , Particle Size , Photochemistry , Spectroscopy, Fourier Transform Infrared
2.
Anal Chem ; 70(15): 3255-60, 1998 Aug 01.
Article in English | MEDLINE | ID: mdl-11013726

ABSTRACT

The applicability of capillary electrochromatography (CEC) with photodiode array UV detection for the analysis of cannabinoids is presented. Baseline separation of seven cannabinoids (cannabigerol, cannabidiol, cannabinol, delta-9-tetrahydrocannabinol, delta-8-tetrahydrocannabinol, cannabichromene, delta-9-tetrahydrocannabinolic acid) is obtained using a 3-micron CEC Hypersil C18 capillary with an acetonitrile/phosphate (pH 2.57) mobile phase. The effects of acetonitrile concentration, buffer concentration, voltage, temperature, stationary phase, and column length on the separation of the cannabinoids were investigated. Good short- and long-term precision in retention times are observed, with significant improvement obtained using relative retention times with cannabinol as reference compound. Although short- and long-term peak area precisions are poor, satisfactory reproducibility is obtained using relative peak areas with cannabinol as reference compound. The applicability of the CEC methodology to drug seizures was demonstrated on marijuana and hashish. Using a high-sensitivity UV flow cell with an extended path length of 1.2 mm, concentration sensitivities approaching HPLC were obtained.


Subject(s)
Cannabinoids/analysis , Chromatography, High Pressure Liquid/methods , Electrochemistry/methods , Acetonitriles/chemistry , Cannabis/chemistry , Chromatography, High Pressure Liquid/instrumentation , Phosphates/chemistry , Temperature
3.
Anal Chem ; 70(21): 4563-9, 1998 Nov 01.
Article in English | MEDLINE | ID: mdl-21644697

ABSTRACT

The separation of strongly basic, moderately basic, weakly basic, strongly acidic, moderately acidic, weakly acidic, and neutral compounds in a single run using capillary electrochromatography (CEC) is presented. This is accomplished using a 3-µm CEC Hypersil C8 capillary with high organic content acetonitrile/phosphate (pH 2.5) mobile phases containing hexylamine. Fifteen basic, acidic, and neutral drugs of forensic interest are resolved using a step gradient. Strong and moderately basic drugs separate before t(o), apparently by a combination of free zone electrophoresis (CZE) and chromatographic phenomena. Weak bases separate after t(o), also by a combination of CZE and chromatographic processes. Due to large selectivity differences between CEC and CZE for bases, there is evidence that the stationary phase is playing a significant role in the separation of these solutes. The CEC approach presented offers unique selectivity, expanded peak capacity, and the ability to solubilize both hydrophilic and hydrophobic solutes in an injection solvent that is compatible with the chromatographic system.

SELECTION OF CITATIONS
SEARCH DETAIL
...