Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Development ; 150(22)2023 Nov 15.
Article in English | MEDLINE | ID: mdl-37870089

ABSTRACT

Macroheterogeneity in follicle-stimulating hormone (FSH) ß-subunit N-glycosylation results in distinct FSH glycoforms. Hypoglycosylated FSH21 is the abundant and more bioactive form in pituitaries of females under 35 years of age, whereas fully glycosylated FSH24 is less bioactive and increases with age. To investigate whether the shift in FSH glycoform abundance contributes to the age-dependent decline in oocyte quality, the direct effects of FSH glycoforms on folliculogenesis and oocyte quality were determined using an encapsulated in vitro mouse follicle growth system. Long-term culture (10-12 days) with FSH21 (10 ng/ml) enhanced follicle growth, estradiol secretion and oocyte quality compared with FSH24 (10 ng/ml) treatment. FSH21 enhanced establishment of transzonal projections, gap junctions and cell-to-cell communication within 24 h in culture. Transient inhibition of FSH21-mediated bidirectional communication abrogated the positive effects of FSH21 on follicle growth, estradiol secretion and oocyte quality. Our data indicate that FSH21 promotes folliculogenesis and oocyte quality in vitro by increasing cell-to-cell communication early in folliculogenesis, and that the shift in in vivo abundance from FSH21 to FSH24 with reproductive aging may contribute to the age-dependent decline in oocyte quality.


Subject(s)
Follicle Stimulating Hormone , Oocytes , Female , Mice , Animals , Follicle Stimulating Hormone/pharmacology , Follicle Stimulating Hormone/physiology , Ovarian Follicle , Cell Communication , Estradiol/pharmacology
2.
Gen Comp Endocrinol ; 340: 114323, 2023 Sep 01.
Article in English | MEDLINE | ID: mdl-37247826

ABSTRACT

ZIP9 was recently characterized as a membrane androgen receptor in Atlantic croaker granulosa/theca (G/T) cells where it mediates androgen-induced apoptosis in vitro, but the physiological significance of this action has remained unclear. In the current study, we utilized ZIP9 knockout (zip9-/-) zebrafish to investigate the role of ZIP9-mediated androgen-induced G/T cell apoptosis in vivo. We first confirmed ZIP9 mediates apoptosis of zebrafish G/T cells in vitro. Testosterone increased apoptosis, intracellular free zinc, and expression of pro-apoptotic members bax and p53 in wildtype and zip9+/+ zebrafish G/T cells, but not in ZIP9 knockout and knockdown cell models. We hypothesized ZIP9-mediated G/T cell apoptosis may be involved in post-ovulatory follicle (POF) breakdown in vivo. Post ovulation, zip9, bax, and p53 were upregulated in zip9+/+ but not in zip9-/- ovaries. Immunoreactivity of cleaved caspase 3 was also higher in POFs from zip9+/+ ovaries compared to zip9-/-, and POF breakdown was significantly delayed in zip9-/- fish compared to zip9+/+ counterparts. To determine the detrimental consequences of delayed POF breakdown in the zip9-/- model, fish were challenged with repeated ovulation induction. After the challenge, zip9-/- fish exhibited abnormal ovarian lesions that contained debris consistent with atretic or necrotic cellular material. However, no abnormalities were observed in zip9+/+ fish ovaries, indicating that the abnormal phenotype is due to the loss of ZIP9. This study demonstrates an important role for ZIP9 in mediating POF breakdown and maintaining tissue remodeling and homeostasis in the teleost ovary and indicates a role for the ZIP9-mediated androgen-induced apoptotic response in vivo.


Subject(s)
Ovarian Cysts , Ovarian Neoplasms , Humans , Animals , Female , Androgens , Receptors, Androgen/genetics , Receptors, Androgen/metabolism , Zebrafish/metabolism , Tumor Suppressor Protein p53/genetics , bcl-2-Associated X Protein/metabolism , Homeostasis , Apoptosis/genetics
3.
Biol Reprod ; 108(1): 5-22, 2023 01 14.
Article in English | MEDLINE | ID: mdl-36136744

ABSTRACT

Folliculogenesis is a tightly coordinated process essential for generating a fertilization-competent gamete while also producing gonadal hormones that sustain endocrine function. In vitro follicle growth systems have been critical to our understanding of key events in folliculogenesis, such as gonadotropin-independent and dependent growth, steroid hormone production, and oocyte growth and maturation (cytoplasmic and meiotic). Although there are several successful follicle culture strategies, the following protocol details an encapsulated in vitro follicle growth (eIVFG) system for use with mouse ovarian follicles. Encapsulated IVFG is performed with alginate hydrogels, which are biologically inert, maintains cell-to-cell interactions between granulosa cells and the oocyte, and preserves follicle architecture as found in the ovary. The system supports follicle growth, development, and differentiation from the early primary follicle to the antral follicle stage. Moreover, post-folliculogenesis events including meiotic maturation, ovulation, and luteinization are also supported. Importantly, the culture of secondary follicles has successfully resulted in viable pups after blastocyst transfer. This alginate-based eIVFG system is versatile and has broad applications as a tool for interrogating the fundamental biology of the ovarian follicle in a controlled manner, a screening platform for toxicity and bioactivity, and a potential fertility preservation method for endangered species as well as humans.


Subject(s)
Oogenesis , Ovarian Follicle , Humans , Female , Mice , Animals , Oocytes , Gonadotropins , Alginates
4.
Mol Cell Endocrinol ; 538: 111461, 2021 12 01.
Article in English | MEDLINE | ID: mdl-34555425

ABSTRACT

While androgens have been reported to mediate cardiovascular endothelial cell proliferation, the potential involvement of membrane androgen receptors (mAR) has not been examined. Here we show ZIP9, a recently characterized mAR, mediates androgen-induced early proliferative events in human umbilical vein endothelial cells (HUVECs). Androgen treatment significantly increased cyclin D1 nuclear localization and proliferation, which were blocked by transfection with siRNA targeting ZIP9 but not the nuclear AR. Testosterone rapidly activated inhibitory G protein signaling, Erk, and Akt, and inhibition of these signaling members abrogated the ZIP9-mediated cyclin D1 and proliferative responses. Erk and Akt modulated cyclin D1 nuclear localization by upregulation of cyclin D1 mRNA and inhibition of GSK-3ß activity, respectively. This is the first study to demonstrate a role for ZIP9 in HUVEC proliferation and indicates ZIP9 is a physiologically-relevant androgen receptor in the cardiovascular system that merits further study as a potential therapeutic target for treating cardiovascular disease.


Subject(s)
Androgens/pharmacology , Cation Transport Proteins/metabolism , Receptors, Androgen/metabolism , Apoptosis , Cell Nucleus/metabolism , Cell Proliferation/drug effects , Cyclin D1/genetics , Cyclin D1/metabolism , Human Umbilical Vein Endothelial Cells , Humans , MAP Kinase Signaling System/drug effects , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction/drug effects
5.
Front Endocrinol (Lausanne) ; 12: 637691, 2021.
Article in English | MEDLINE | ID: mdl-33790865

ABSTRACT

The role G-protein coupled estrogen receptor (GPER) plays in vertebrate reproduction remains controversial. To investigate GPER's reproductive role, we generated a gper zebrafish mutant line (gper-/- ) using TALENs. Gper mutant females exhibited reduced fertility with a 40.85% decrease in embryo production which was associated with a significant decrease in the number of Stage V (730-750 µm) ovulated oocytes. Correspondingly, the number of early vitellogenic follicles (Stage III, 400-450 µm) in gper-/- ovaries was greater than that in wildtypes (wt), suggesting that subsequent follicle development was retarded in the gper-/- fish. Moreover, plasma vitellogenin levels were decreased in gper-/- females, and epidermal growth factor receptor (Egfr) expression was lower in Stage III vitellogenic oocytes than in wt counterparts. However, hepatic nuclear estrogen receptor levels were not altered, and estrogen levels were elevated in ovarian follicles. These results suggest that Gper is involved in the control of ovarian follicle development via regulation of vitellogenesis and Egfr expression in zebrafish.


Subject(s)
Receptors, G-Protein-Coupled/genetics , Vitellogenesis/physiology , Zebrafish Proteins/genetics , Animals , Cell Membrane/metabolism , ErbB Receptors/metabolism , Estrogens/metabolism , Female , Fertility , Fishes , Metabolomics/methods , Mutation , Oocytes/cytology , Oocytes/metabolism , Ovarian Follicle/metabolism , Ovulation , Receptors, Estrogen/metabolism , Receptors, G-Protein-Coupled/metabolism , Vitellogenins/metabolism , Zebrafish , Zebrafish Proteins/metabolism
6.
Sci Rep ; 10(1): 15673, 2020 09 24.
Article in English | MEDLINE | ID: mdl-32973303

ABSTRACT

The zinc transporter ZIP9 (SLC39A9) was recently characterized as a membrane androgen receptor in various teleost and mammalian cell models. ZIP9 shows the highest expression in ovaries of teleosts, a tissue in which both androgen signaling and zinc dynamics have significant roles. To examine the role of ZIP9 in ovarian physiology, we generated a ZIP9-mutant zebrafish strain using a CRISPR/Cas9 system. zip9-/- females showed significant reductions in fecundity, embryo viability, and growth of their offspring compared to wildtype (WT) fish. Furthermore, a high proportion of zip9-/- eggs failed to undergo normal chorion elevation during activation. In WT eggs, zinc was detected in cortically-localized vesicles which underwent exocytosis upon activation. zip9-/- eggs showed abnormal cortical vesicle development and had a significantly depressed activation-induced zinc release compared to WT eggs. Moreover, pharmacologically sustained elevation of zinc in WT eggs prior to activation resulted in abnormal chorion elevation similar to that observed in zip9-/- eggs. These results indicate that ZIP9 is essential for proper zinc modulation during zebrafish egg activation and presents the first evidence of zinc modulation during egg activation in a non-mammalian species.


Subject(s)
Ovum/physiology , Zebrafish/metabolism , Zinc/metabolism , Animals , Calcium/metabolism , Gene Expression Regulation, Developmental , Larva/growth & development , Oocytes/physiology , Zebrafish/growth & development
7.
Biol Reprod ; 101(2): 377-391, 2019 08 01.
Article in English | MEDLINE | ID: mdl-31074766

ABSTRACT

Androgens mediate a number of processes in mammalian and teleost ovaries in a follicle-stage dependent manner, including follicle growth, survival, and apoptosis. We recently reported that the membrane androgen receptor ZIP9 mediates apoptosis in Atlantic croaker granulosa/theca (G/T) cells from mature ovarian follicles, but the effects of androgens on early stage G/T cells in this model remains unknown. Here we show that testosterone mediates pro- and anti-apoptotic responses in a follicle stage-dependent manner in croaker ovarian follicle cells. Testosterone treatment decreased the incidence of apoptosis in G/T cells from early stage follicles (diameter <300 µm) but increased apoptosis in G/T cells from late stage follicles (diameter >400 µm). Small interfering RNA targeting ZIP9, but not the nuclear androgen receptor, blocked the anti-apoptotic response, indicating ZIP9 mediates anti-apoptotic in addition to pro-apoptotic responses. Testosterone treatment of early stage G/T cells resulted in opposite signaling outcomes from those previously characterized for the ZIP9-mediated apoptotic response including decreased cAMP and intracellular free zinc levels, and downregulation of pro-apoptotic member mRNA expression. While ZIP9-mediated apoptosis involves activation of a stimulatory G protein (Gs), activators of Gs signaling antagonized the anti-apoptotic response. Proximity ligation and G protein activation assays indicated that in G/T cells from early stage follicles ZIP9 is in close proximity and activates an inhibitory G protein, while in G/T cells from late stage follicles ZIP9 is in close proximity and activates Gs. This study demonstrates that ZIP9 mediates opposite survival responses of croaker G/T cells by activating different G proteins in a follicle stage-dependent manner.


Subject(s)
Cation Transport Proteins/metabolism , GTP-Binding Proteins/metabolism , Ovary/metabolism , Perciformes/physiology , Testosterone/pharmacology , Animals , Apoptosis , Cation Transport Proteins/genetics , Female , GTP-Binding Proteins/genetics , Gene Expression Regulation/drug effects , Gene Expression Regulation/physiology , Signal Transduction
8.
Gen Comp Endocrinol ; 263: 51-61, 2018 07 01.
Article in English | MEDLINE | ID: mdl-29649418

ABSTRACT

Although previous studies suggest membrane progesterone receptor alpha (mPRα/Paqr7) mediates 17, 20ß-dihydroxy-4-pregnen-3-one (DHP) induction of oocyte maturation (OM) in zebrafish, critical information needed to establish mPRα as the receptor mediating OM is lacking. The relative potencies of progestins and specific mPRα agonists in inducing OM matched their relative binding affinities for zebrafish mPRα, supporting its role in OM. Microinjection of pertussis toxin blocked DHP induction of OM and the progestin-induced decrease in cyclic AMP levels, suggesting mPRα activates an inhibitory G protein (Gi). Microinjection of morpholino antisense oligonucleotides to zebrafish pgrmc1 blocked induction of OM by DHP which was accompanied by decreased levels of Pgrmc1 and mPRα on the oocyte plasma membranes. Similarly, treatment of denuded oocytes with a PGRMC1 inhibitor, AG205, blocked the gonadotropin-induced increase in plasma membrane mPRα levels and attenuated DHP induction of OM. Co-incubation with two inhibitors of epidermal growth factor Erbb2, ErbB2 inhibitor II and AG 879, prevented induction of OM by DHP, indicating the likely involvement of Erbb2 in mPRα-mediated signaling. Treatment with AG205 reversed the inhibitory effects of the Erbb2 inhibitors on OM and also inhibited insulin-like growth factor-1 induction of OM. Close associations between Pgrmc1 and mPRα, and between Pgrmc1 and Erbb2 were detected in zebrafish oocytes with in situ proximity ligation assays. The results suggest progestin induction of OM in zebrafish is mediated through an mPRα/Gi/Erbb2 signaling pathway that requires Pgrmc1 for expression of mPRα on oocyte membranes and that Pgrmc1 also is required for induction of OM through Erbb2.


Subject(s)
Membrane Proteins/physiology , Oogenesis/genetics , Receptors, Progesterone/physiology , Zebrafish Proteins/physiology , Zebrafish/physiology , Animals , Animals, Genetically Modified , Cells, Cultured , Cyclic AMP/metabolism , Embryo, Nonmammalian , Female , Oligonucleotides, Antisense/pharmacology , Oocytes/drug effects , Oocytes/physiology , Oogenesis/drug effects , Receptors, Progesterone/antagonists & inhibitors , Receptors, Progesterone/genetics , Signal Transduction/drug effects , Signal Transduction/genetics , Zebrafish/embryology
9.
Gen Comp Endocrinol ; 257: 130-136, 2018 02 01.
Article in English | MEDLINE | ID: mdl-28479083

ABSTRACT

Rapid, androgen actions initiated at the cell surface have been reported in a variety of vertebrate cells, including several macrophage and prostate cancer cell lines that lack the nuclear androgen receptor. However, until recently the identity of the novel membrane androgen receptor (mAR) mediating these nonclassical androgen actions remained unknown. In 2014, a novel mAR unrelated to nuclear androgen receptors was identified in Atlantic croaker ovaries as the zinc transporter protein, ZIP9. ZIP9 is one of the 14 members of the ZIP (ZRT-and Irt-like Protein, SLC39A) family that regulates zinc homeostasis by transporting zinc across cell and organelle membranes into the cytoplasm. Zinc is a micronutrient critical for the maintenance of physiological and cellular processes, such as development, growth, protein assembly and activity, signaling, and apoptosis. Both croaker ZIP9 and human ZIP9 proteins have the binding characteristics of high affinity, specific mARs, and are coupled to G proteins. Testosterone induces apoptosis through ZIP9 in croaker granulosa cells and in human breast and prostate cancer cells by a unique mechanism involving increases in both second messengers and intracellular free zinc concentrations. ZIP9 also mediates testosterone regulation of tight junction formation in Sertoli cells and nonclassical testosterone signaling in spermatogenic cells. ZIP9 acts through several signal transduction pathways, a stimulatory G protein (Gs) in granulosa cells, an inhibitory one (Gi) in cancer cells, and a Gq11 one (Gnα11) in spermatogenic cells. ZIP9 has a very broad tissue distribution and is predicted to mediate numerous and diverse nonclassical androgen actions in vertebrates.


Subject(s)
Carrier Proteins/metabolism , Perciformes , Receptors, Androgen/metabolism , Animals , Apoptosis , Female , Humans , Male , Zinc/metabolism
10.
Endocrinology ; 158(9): 3015-3029, 2017 09 01.
Article in English | MEDLINE | ID: mdl-28633436

ABSTRACT

Recent studies show that androgen-induced apoptosis in Atlantic croaker primary granulosa and theca (G/T) cells and in human breast and prostate cancer cell lines is mediated by the membrane androgen receptor ZIP9, which belongs to the SLC39A zinc transporter family. However, the apoptotic signaling pathways remain unclear because ZIP9 activates an inhibitory G protein in human cancer cells, whereas recombinant croaker ZIP9 activates a stimulatory G protein (Gs) in transfected cancer cells. We investigated androgen-dependent apoptotic pathways to identify the signaling pathways regulated through wild-type croaker ZIP9 in ovarian follicle cells. We show that the ZIP9-mediated apoptotic signaling pathway in croaker G/T cells shares several proapoptotic members with those in human cancer cells, but is activated through a Gsα subunit-dependent pathway. Testosterone treatment of croaker G/T cells increased intracellular zinc levels, mitogen-activated protein (MAP) kinase activity, caspase 3 activity, messenger RNA levels of proapoptotic members Bax, p53, and c-Jun N-terminal kinase, and the incidence of apoptosis, similar to findings in mammalian cancer cells, but also increased cyclic adenosine monophosphate concentrations. Transfection with small interfering RNA targeting croaker ZIP9 blocked testosterone-induced increase in bax, p53, and jnk expression. Testosterone-induced apoptosis and caspase 3 activation depended on the presence of extracellular zinc and were effectively blocked with cotreatment of inhibitors of the Gsα subunit, adenylyl cyclase, protein kinase A, and MAP kinase (Erk1/2) activation. These results indicate that ZIP9-mediated testosterone signaling in croaker G/T cells involves multiple pathways, some of which differ from those activated through ZIP9 in human cancer cells even though a similar apoptotic response is observed.


Subject(s)
Apoptosis , Cation Transport Proteins/physiology , GTP-Binding Protein alpha Subunits/metabolism , Ovary/physiology , Perciformes , Receptors, Androgen/physiology , Animals , Apoptosis/drug effects , Apoptosis/genetics , Cation Transport Proteins/genetics , Cells, Cultured , Female , MAP Kinase Signaling System/physiology , Ovary/cytology , Ovary/drug effects , Ovary/metabolism , Perciformes/genetics , Perciformes/physiology , Receptors, Androgen/genetics , Signal Transduction/drug effects , Signal Transduction/genetics , Testosterone/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...