Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
1.
J Med Chem ; 64(18): 13780-13792, 2021 09 23.
Article in English | MEDLINE | ID: mdl-34510892

ABSTRACT

Optimization of a previously reported lead series of PI3Kδ inhibitors with a novel binding mode led to the identification of a clinical candidate compound 31 (GSK251). Removal of an embedded Ames-positive heteroaromatic amine by reversing a sulfonamide followed by locating an interaction with Trp760 led to a highly selective compound 9. Further optimization to avoid glutathione trapping, to enhance potency and selectivity, and to optimize an oral pharmacokinetic profile led to the discovery of compound 31 (GSK215) that had a low predicted daily dose (45 mg, b.i.d) and a rat toxicity profile suitable for further development.


Subject(s)
Class I Phosphatidylinositol 3-Kinases/metabolism , Phosphoinositide-3 Kinase Inhibitors/pharmacology , Sulfonamides/pharmacology , Animals , Crystallography, X-Ray , Female , Male , Mice, Inbred BALB C , Molecular Structure , Phosphoinositide-3 Kinase Inhibitors/chemical synthesis , Phosphoinositide-3 Kinase Inhibitors/metabolism , Protein Binding , Rats, Wistar , Structure-Activity Relationship , Sulfonamides/chemical synthesis , Sulfonamides/metabolism
2.
J Biol Chem ; 297(2): 100928, 2021 08.
Article in English | MEDLINE | ID: mdl-34274316

ABSTRACT

B-cell lymphoma 6 (BCL6) is a zinc finger transcriptional repressor possessing a BTB-POZ (BR-C, ttk, and bab for BTB; pox virus and zinc finger for POZ) domain, which is required for homodimerization and association with corepressors. BCL6 has multiple roles in normal immunity, autoimmunity, and some types of lymphoma. Mice bearing disrupted BCL6 loci demonstrate suppressed high-affinity antibody responses to T-dependent antigens. The corepressor binding groove in the BTB-POZ domain is a potential target for small compound-mediated therapy. Several inhibitors targeting this binding groove have been described, but these compounds have limited or absent in vivo activity. Biophysical studies of a novel compound, GSK137, showed an in vitro pIC50 of 8 and a cellular pIC50 of 7.3 for blocking binding of a peptide derived from the corepressor silencing mediator for retinoid or thyroid hormone receptors to the BCL6 BTB-POZ domain. The compound has good solubility (128 µg/ml) and permeability (86 nM/s). GSK137 caused little change in cell viability or proliferation in four BCL6-expressing B-cell lymphoma lines, although there was modest dose-dependent accumulation of G1 phase cells. Pharmacokinetic studies in mice showed a profile compatible with achieving good levels of target engagement. GSK137, administered orally, suppressed immunoglobulin G responses and reduced numbers of germinal centers and germinal center B cells following immunization of mice with the hapten trinitrophenol. Overall, we report a novel small-molecule BCL6 inhibitor with in vivo activity that inhibits the T-dependent antigen immune response.


Subject(s)
Proto-Oncogene Proteins c-bcl-6 , Animals , B-Lymphocytes/metabolism , Humans , Mice , Transcription, Genetic , Zinc Fingers
3.
ACS Med Chem Lett ; 11(7): 1386-1391, 2020 Jul 09.
Article in English | MEDLINE | ID: mdl-32676144

ABSTRACT

A macrocyclization approach has been explored on a series of benzoxazine phosphoinositide 3-kinase δ inhibitors, resulting in compounds with improved potency, permeability, and in vivo clearance while maintaining good solubility. The thermodynamics of binding was explored via surface plasmon resonance, and the binding of lead macrocycle 19 was found to be almost exclusively entropically driven compared with progenitor 18, which demonstrated both enthalpic and entropic contributions. The pharmacokinetics of macrocycle 19 was also explored in vivo, where it showed reduced clearance when compared with the progenitor 18. This work adds to the growing body of evidence that macrocyclization could provide an alternative and complementary approach to the design of small-molecule inhibitors, with the potential to deliver differentiated properties.

5.
J Med Chem ; 63(2): 638-655, 2020 01 23.
Article in English | MEDLINE | ID: mdl-31855425

ABSTRACT

Optimization of a lead series of PI3Kδ inhibitors based on a dihydroisobenzofuran core led to the identification of potent, orally bioavailable compound 19. Selectivity profiling of compound 19 showed similar potency for class III PI3K, Vps34, and PI3Kδ, and compound 19 was not well-tolerated in a 7-day rat toxicity study. Structure-based design led to an improvement in selectivity for PI3Kδ over Vps34 and, a focus on oral phramacokinetics properties resulted in the discovery of compound 41, which showed improved toxicological outcomes at similar exposure levels to compound 19.


Subject(s)
Class I Phosphatidylinositol 3-Kinases/antagonists & inhibitors , Class III Phosphatidylinositol 3-Kinases/antagonists & inhibitors , Phosphoinositide-3 Kinase Inhibitors/pharmacology , Phosphoinositide-3 Kinase Inhibitors/pharmacokinetics , Animals , Binding, Competitive , Biological Availability , Cell Membrane Permeability , Crystallography, X-Ray , Drug Discovery , Humans , Isoenzymes , Models, Molecular , Molecular Docking Simulation , Phosphoinositide-3 Kinase Inhibitors/toxicity , Rats , Structure-Activity Relationship
6.
ACS Med Chem Lett ; 10(11): 1518-1523, 2019 Nov 14.
Article in English | MEDLINE | ID: mdl-31749904

ABSTRACT

Herein we report the discovery of pyrazolocarboxamides as novel, potent, and kinase selective inhibitors of receptor interacting protein 2 kinase (RIP2). Fragment based screening and design principles led to the identification of the inhibitor series, and X-ray crystallography was used to inform key structural changes. Through key substitutions about the N1 and C5 N positions on the pyrazole ring significant kinase selectivity and potency were achieved. Bridged bicyclic pyrazolocarboxamide 11 represents a selective and potent inhibitor of RIP2 and will allow for a more detailed investigation of RIP2 inhibition as a therapeutic target for autoinflammatory disorders.

8.
J Med Chem ; 62(15): 6972-6984, 2019 08 08.
Article in English | MEDLINE | ID: mdl-31283227

ABSTRACT

4-(Pyrimidin-4-yl)morpholines are privileged pharmacophores for PI3K and PIKKs inhibition by virtue of the morpholine oxygen, both forming the key hydrogen bonding interaction and conveying selectivity over the broader kinome. Key to the morpholine utility as a kinase hinge binder is its ability to adopt a coplanar conformation with an adjacent aromatic core favored by the morpholine nitrogen nonbonding pair of electrons interacting with the electron deficient pyrimidine π-system. Few selective morpholine replacements have been identified to date. Herein we describe the discovery of a potent non-nitrogen containing morpholine isostere with the ability to mimic this conformation and its application in a potent selective dual inhibitor of mTORC1 and mTORC2 (29b).


Subject(s)
Bridged Bicyclo Compounds/chemistry , Cycloheptanes/chemistry , Morpholines/chemistry , Phosphatidylinositol 3-Kinases , Phosphoinositide-3 Kinase Inhibitors/chemistry , Proto-Oncogene Proteins c-akt/antagonists & inhibitors , TOR Serine-Threonine Kinases/antagonists & inhibitors , Bridged Bicyclo Compounds/pharmacology , Cycloheptanes/pharmacology , Drug Discovery/methods , Humans , Morpholines/pharmacology , Phosphatidylinositol 3-Kinases/metabolism , Phosphoinositide-3 Kinase Inhibitors/pharmacology , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction/drug effects , Signal Transduction/physiology , TOR Serine-Threonine Kinases/metabolism
9.
J Med Chem ; 62(14): 6482-6494, 2019 07 25.
Article in English | MEDLINE | ID: mdl-31265286

ABSTRACT

RIP2 kinase has been identified as a key signal transduction partner in the NOD2 pathway contributing to a variety of human pathologies, including immune-mediated inflammatory diseases. Small-molecule inhibitors of RIP2 kinase or its signaling partners on the NOD2 pathway that are suitable for advancement into the clinic have yet to be described. Herein, we report our discovery and profile of the prodrug clinical compound, inhibitor 3, currently in phase 1 clinical studies. Compound 3 potently binds to RIP2 kinase with good kinase specificity and has excellent activity in blocking many proinflammatory cytokine responses in vivo and in human IBD explant samples. The highly favorable physicochemical and ADMET properties of 3 combined with high potency led to a predicted low oral dose in humans.


Subject(s)
Benzothiazoles/pharmacology , Phosphates/pharmacology , Protein Kinase Inhibitors/pharmacology , Quinazolines/pharmacology , Receptor-Interacting Protein Serine-Threonine Kinase 2/antagonists & inhibitors , Animals , Benzothiazoles/chemistry , Benzothiazoles/pharmacokinetics , Benzothiazoles/therapeutic use , Colitis/drug therapy , Dogs , Drug Discovery , Humans , Male , Mice , Molecular Docking Simulation , Phosphates/chemistry , Phosphates/pharmacokinetics , Phosphates/therapeutic use , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/pharmacokinetics , Protein Kinase Inhibitors/therapeutic use , Quinazolines/chemistry , Quinazolines/pharmacokinetics , Quinazolines/therapeutic use , Rats, Sprague-Dawley , Receptor-Interacting Protein Serine-Threonine Kinase 2/metabolism , Swine , Swine, Miniature
10.
J Med Chem ; 61(24): 11061-11073, 2018 12 27.
Article in English | MEDLINE | ID: mdl-30532965

ABSTRACT

A deconstruction of previously reported phosphoinositide 3-kinase δ (PI3Kδ) inhibitors and subsequent regrowth led to the identification of a privileged fragment for PI3Kδ, which was exploited to deliver a potent, efficient, and selective lead series with a novel binding mode observed in the PI3Kδ crystal structure.


Subject(s)
Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Phosphoinositide-3 Kinase Inhibitors , Structure-Activity Relationship , Administration, Inhalation , Animals , Class Ia Phosphatidylinositol 3-Kinase/chemistry , Crystallography, X-Ray , Dogs , Drug Evaluation, Preclinical , ERG1 Potassium Channel/metabolism , Enzyme Inhibitors/administration & dosage , Hydrogen Bonding , Isoquinolines/chemistry , Madin Darby Canine Kidney Cells , Rats
11.
ACS Med Chem Lett ; 9(10): 1039-1044, 2018 Oct 11.
Article in English | MEDLINE | ID: mdl-30344914

ABSTRACT

RIP2 kinase was recently identified as a therapeutic target for a variety of autoimmune diseases. We have reported previously a selective 4-aminoquinoline-based RIP2 inhibitor GSK583 and demonstrated its effectiveness in blocking downstream NOD2 signaling in cellular models, rodent in vivo models, and human ex vivo disease models. While this tool compound was valuable in validating the biological pathway, it suffered from activity at the hERG ion channel and a poor PK/PD profile thereby limiting progression of this analog. Herein, we detail our efforts to improve both this off-target liability as well as the PK/PD profile of this series of inhibitors through modulation of lipophilicity and strengthening hinge binding ability. These efforts have led to inhibitor 7, which possesses high binding affinity for the ATP pocket of RIP2 (IC50 = 1 nM) and inhibition of downstream cytokine production in human whole blood (IC50 = 10 nM) with reduced hERG activity (14 µM).

12.
ChemMedChem ; 13(7): 672-677, 2018 04 06.
Article in English | MEDLINE | ID: mdl-29399991

ABSTRACT

Our findings reported herein provide support for the benefits of including functional group complexity (FGC) within fragments when screening against protein targets such as Mycobacterium tuberculosis InhA. We show that InhA fragment actives with FGC maintained their binding pose during elaboration. Furthermore, weak fragment hits with functional group handles also allowed for facile fragment elaboration to afford novel and potent InhA inhibitors with good ligand efficiency metrics for optimization.


Subject(s)
Antitubercular Agents/chemistry , Bacterial Proteins/antagonists & inhibitors , Enzyme Inhibitors/chemistry , Mycobacterium tuberculosis/enzymology , Oxidoreductases/antagonists & inhibitors , Small Molecule Libraries/chemistry , Antitubercular Agents/chemical synthesis , Bacterial Proteins/chemistry , Crystallography, X-Ray , Enzyme Inhibitors/chemical synthesis , Ligands , Models, Molecular , Molecular Structure , Oxidoreductases/chemistry , Small Molecule Libraries/chemical synthesis , Surface Plasmon Resonance
13.
J Am Chem Soc ; 140(3): 932-939, 2018 01 24.
Article in English | MEDLINE | ID: mdl-29232121

ABSTRACT

Selective covalent inhibition of kinases by targeting poorly conserved cysteines has proven highly fruitful to date in the development of chemical probes and approved drugs. However, this approach is limited to ∼200 kinases possessing such a cysteine near the ATP-binding pocket. Herein, we report a novel approach to achieve selective, irreversible kinase inhibition, by targeting the conserved catalytic lysine residue. We have illustrated our approach by developing selective, covalent PI3Kδ inhibitors that exhibit nanomolar potency in cellular assays, and a duration of action >48 h in CD4+ T cells. Despite conservation of the lysine residue throughout the kinome, the lead compound shows high levels of selectivity over a selection of lipid and protein kinases in biochemical assays, as well as covalent binding to very few off-target proteins in live-cell proteomic studies. We anticipate this approach could offer a general strategy, as an alternative to targeting non-conserved cysteines, for the development of selective covalent kinase inhibitors.


Subject(s)
Lysine/chemistry , Phosphatidylinositol 3-Kinases/chemistry , Phosphoinositide-3 Kinase Inhibitors , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/pharmacology , Animals , Catalytic Domain/drug effects , Cell Line , Class I Phosphatidylinositol 3-Kinases , Drug Discovery , Humans , Lysine/metabolism , Mice , Molecular Docking Simulation , Phosphatidylinositol 3-Kinases/metabolism , Proteomics
14.
J Chem Inf Model ; 56(6): 1063-77, 2016 06 27.
Article in English | MEDLINE | ID: mdl-27149958

ABSTRACT

The 2014 CSAR Benchmark Exercise was the last community-wide exercise that was conducted by the group at the University of Michigan, Ann Arbor. For this event, GlaxoSmithKline (GSK) donated unpublished crystal structures and affinity data from in-house projects. Three targets were used: tRNA (m1G37) methyltransferase (TrmD), Spleen Tyrosine Kinase (SYK), and Factor Xa (FXa). A particularly strong feature of the GSK data is its large size, which lends greater statistical significance to comparisons between different methods. In Phase 1 of the CSAR 2014 Exercise, participants were given several protein-ligand complexes and asked to identify the one near-native pose from among 200 decoys provided by CSAR. Though decoys were requested by the community, we found that they complicated our analysis. We could not discern whether poor predictions were failures of the chosen method or an incompatibility between the participant's method and the setup protocol we used. This problem is inherent to decoys, and we strongly advise against their use. In Phase 2, participants had to dock and rank/score a set of small molecules given only the SMILES strings of the ligands and a protein structure with a different ligand bound. Overall, docking was a success for most participants, much better in Phase 2 than in Phase 1. However, scoring was a greater challenge. No particular approach to docking and scoring had an edge, and successful methods included empirical, knowledge-based, machine-learning, shape-fitting, and even those with solvation and entropy terms. Several groups were successful in ranking TrmD and/or SYK, but ranking FXa ligands was intractable for all participants. Methods that were able to dock well across all submitted systems include MDock,1 Glide-XP,2 PLANTS,3 Wilma,4 Gold,5 SMINA,6 Glide-XP2/PELE,7 FlexX,8 and MedusaDock.9 In fact, the submission based on Glide-XP2/PELE7 cross-docked all ligands to many crystal structures, and it was particularly impressive to see success across an ensemble of protein structures for multiple targets. For scoring/ranking, submissions that showed statistically significant achievement include MDock1 using ITScore1,10 with a flexible-ligand term,11 SMINA6 using Autodock-Vina,12,13 FlexX8 using HYDE,14 and Glide-XP2 using XP DockScore2 with and without ROCS15 shape similarity.16 Of course, these results are for only three protein targets, and many more systems need to be investigated to truly identify which approaches are more successful than others. Furthermore, our exercise is not a competition.


Subject(s)
Drug Design , Molecular Docking Simulation , Proteins/metabolism , Benchmarking , Databases, Pharmaceutical , Factor Xa/chemistry , Factor Xa/metabolism , Ligands , Protein Conformation , Proteins/chemistry , Structure-Activity Relationship , Syk Kinase/chemistry , Syk Kinase/metabolism , tRNA Methyltransferases/chemistry , tRNA Methyltransferases/metabolism
15.
J Med Chem ; 59(10): 4867-80, 2016 05 26.
Article in English | MEDLINE | ID: mdl-27109867

ABSTRACT

RIP2 kinase is a central component of the innate immune system and enables downstream signaling following activation of the pattern recognition receptors NOD1 and NOD2, leading to the production of inflammatory cytokines. Recently, several inhibitors of RIP2 kinase have been disclosed that have contributed to the fundamental understanding of the role of RIP2 in this pathway. However, because they lack either broad kinase selectivity or strong affinity for RIP2, these tools have only limited utility to assess the role of RIP2 in complex environments. We present, herein, the discovery and pharmacological characterization of GSK583, a next-generation RIP2 inhibitor possessing exquisite selectivity and potency. Having demonstrated the pharmacological precision of this tool compound, we report its use in elucidating the role of RIP2 kinase in a variety of in vitro, in vivo, and ex vivo experiments, further clarifying our understanding of the role of RIP2 in NOD1 and NOD2 mediated disease pathogenesis.


Subject(s)
Aminoquinolines/pharmacology , Protein Kinase Inhibitors/pharmacology , Receptor-Interacting Protein Serine-Threonine Kinase 2/antagonists & inhibitors , Sulfones/pharmacology , Aminoquinolines/blood , Aminoquinolines/chemistry , Animals , Dose-Response Relationship, Drug , Female , Humans , Male , Mice , Mice, Inbred C57BL , Models, Molecular , Molecular Structure , Protein Kinase Inhibitors/blood , Protein Kinase Inhibitors/chemistry , Rats , Rats, Sprague-Dawley , Receptor-Interacting Protein Serine-Threonine Kinase 2/metabolism , Structure-Activity Relationship , Sulfones/blood , Sulfones/chemistry
16.
ChemMedChem ; 11(7): 687-701, 2016 Apr 05.
Article in English | MEDLINE | ID: mdl-26934341

ABSTRACT

Isoniazid (INH) remains one of the cornerstones of antitubercular chemotherapy for drug-sensitive strains of M. tuberculosis bacteria. However, the increasing prevalence of multidrug-resistant (MDR) and extensively drug-resistant (XDR) strains containing mutations in the KatG enzyme, which is responsible for the activation of INH into its antitubercular form, have rendered this drug of little or no use in many cases of drug-resistant tuberculosis. Presented herein is a novel family of antitubercular direct NADH-dependent 2-trans enoyl-acyl carrier protein reductase (InhA) inhibitors based on an N-benzyl-4-((heteroaryl)methyl)benzamide template; unlike INH, these do not require prior activation by KatG. Given their direct InhA target engagement, these compounds should be able to circumvent KatG-related resistance in the clinic. The lead molecules were shown to be potent inhibitors of InhA and showed activity against M. tuberculosis bacteria. This new family of inhibitors was found to be chemically tractable, as exemplified by the facile synthesis of analogues and the establishment of structure-activity relationships. Furthermore, a co-crystal structure of the initial hit with the enzyme is disclosed, providing valuable information toward the design of new InhA inhibitors for the treatment of MDR/XDR tuberculosis.


Subject(s)
Antitubercular Agents/pharmacology , Benzamides/pharmacology , Enzyme Inhibitors/pharmacology , Inhibins/antagonists & inhibitors , Mycobacterium tuberculosis/drug effects , NAD/metabolism , Tuberculosis, Multidrug-Resistant/drug therapy , Animals , Antitubercular Agents/chemical synthesis , Antitubercular Agents/chemistry , Benzamides/chemical synthesis , Benzamides/chemistry , Dose-Response Relationship, Drug , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/chemistry , Female , Inhibins/metabolism , Mice , Mice, Inbred C57BL , Microbial Sensitivity Tests , Molecular Structure , Mycobacterium tuberculosis/enzymology , Structure-Activity Relationship , Tuberculosis, Multidrug-Resistant/enzymology
17.
Eur J Med Chem ; 112: 252-257, 2016 Apr 13.
Article in English | MEDLINE | ID: mdl-26900657

ABSTRACT

Tetrahydropyran derivative 1 was discovered in a high-throughput screening campaign to find new inhibitors of mycobacterial InhA. Following initial in-vitro profiling, a structure-activity relationship study was initiated and a focused library of analogs was synthesized and evaluated. This yielded compound 42 with improved antimycobacterial activity and low cytotoxicity. Additionally, the crystal structure of InhA in complex with inhibitor 1 was resolved, to reveal the binding mode and provide hints for further optimization.


Subject(s)
Antitubercular Agents/chemistry , Antitubercular Agents/pharmacology , Bacterial Proteins/antagonists & inhibitors , Mycobacterium tuberculosis/drug effects , Oxidoreductases/antagonists & inhibitors , Pyrans/chemistry , Pyrans/pharmacology , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Humans , Microbial Sensitivity Tests , Models, Molecular , Mycobacterium tuberculosis/chemistry , Mycobacterium tuberculosis/metabolism , Oxidoreductases/chemistry , Oxidoreductases/metabolism , Structure-Activity Relationship , Tuberculosis/drug therapy , Tuberculosis/microbiology
18.
Bioorg Med Chem ; 23(21): 7000-6, 2015 Nov 01.
Article in English | MEDLINE | ID: mdl-26455654

ABSTRACT

Receptor interacting protein 2 (RIP2) is an intracellular kinase and key signaling partner for the pattern recognition receptors NOD1 and NOD2 (nucleotide-binding oligomerization domain-containing proteins 1 and 2). As such, RIP2 represents an attractive target to probe the role of these pathways in disease. In an effort to design potent and selective inhibitors of RIP2 we established a crystallographic system and determined the structure of the RIP2 kinase domain in an apo form and also in complex with multiple inhibitors including AMP-PCP (ß,γ-Methyleneadenosine 5'-triphosphate, a non-hydrolysable adenosine triphosphate mimic) and structurally diverse ATP competitive chemotypes identified via a high-throughput screening campaign. These structures represent the first set of diverse RIP2-inhibitor co-crystal structures and demonstrate that the protein possesses the ability to adopt multiple DFG-in as well as DFG-out and C-helix out conformations. These structures reveal key protein-inhibitor structural insights and serve as the foundation for establishing a robust structure-based drug design effort to identify both potent and highly selective inhibitors of RIP2 kinase.


Subject(s)
Adenosine Triphosphate/analogs & derivatives , Protein Kinase Inhibitors/chemistry , Receptor-Interacting Protein Serine-Threonine Kinase 2/chemistry , Adenosine Triphosphate/metabolism , Binding Sites , Catalytic Domain , Crystallography, X-Ray , Drug Design , Humans , Inhibitory Concentration 50 , Kinetics , Molecular Dynamics Simulation , Protein Kinase Inhibitors/metabolism , Receptor-Interacting Protein Serine-Threonine Kinase 2/metabolism
19.
J Med Chem ; 57(4): 1276-88, 2014 Feb 27.
Article in English | MEDLINE | ID: mdl-24450589

ABSTRACT

Tuberculosis (TB) is one of the world's oldest and deadliest diseases, killing a person every 20 s. InhA, the enoyl-ACP reductase from Mycobacterium tuberculosis, is the target of the frontline antitubercular drug isoniazid (INH). Compounds that directly target InhA and do not require activation by mycobacterial catalase peroxidase KatG are promising candidates for treating infections caused by INH resistant strains. The application of the encoded library technology (ELT) to the discovery of direct InhA inhibitors yielded compound 7 endowed with good enzymatic potency but with low antitubercular potency. This work reports the hit identification, the selected strategy for potency optimization, the structure-activity relationships of a hundred analogues synthesized, and the results of the in vivo efficacy studies performed with the lead compound 65.


Subject(s)
Antitubercular Agents/pharmacology , Bacterial Proteins/antagonists & inhibitors , Drug Discovery , Mycobacterium tuberculosis/drug effects , Oxidoreductases/antagonists & inhibitors , Magnetic Resonance Spectroscopy , Microbial Sensitivity Tests , Mycobacterium tuberculosis/metabolism , Spectrometry, Mass, Electrospray Ionization
20.
Bioorg Med Chem Lett ; 21(6): 1582-7, 2011 Mar 15.
Article in English | MEDLINE | ID: mdl-21349710

ABSTRACT

The rational design, syntheses and evaluation of potent sulfonamidopyrrolidin-2-one-based factor Xa inhibitors incorporating aminoindane and phenylpyrrolidine P4 motifs are described. These series delivered highly potent anticoagulant compounds with excellent oral pharmacokinetic profiles; however, significant time dependant P450 inhibition was an issue for the aminoindane series, but this was not observed with the phenylpyrrolidine motif, which produced candidate quality molecules with potential for once-daily oral dosing in humans.


Subject(s)
Factor Xa Inhibitors , Pyrrolidines/chemistry , Pyrrolidines/pharmacology , Serine Proteinase Inhibitors/chemistry , Serine Proteinase Inhibitors/pharmacology , Drug Design , Models, Molecular , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...