Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Anal Chim Acta ; 803: 106-12, 2013 Nov 25.
Article in English | MEDLINE | ID: mdl-24216203

ABSTRACT

A disposable paper-based sensor (PBS) is described for the determination of Cu(II) in natural and waste waters at approximately 2 cents per measurement. The device makes use of a polymer inclusion membrane (PIM) to provide the selectivity for Cu(II). The PIM consists of 40 wt% di(2-ethlyhexyl) phosphoric acid (D2EHPA) as the carrier, 10 wt% dioctyl phthalate (DOP) as a plasticizer, 49.5 wt% poly(vinyl chloride) (PVC) as the base polymer and 0.5 wt% (mm(-1)) 1-(2'-pyridylazo)-2-naphthol (PAN) as the colourimetric reagent. High selectivity under mildly acidic conditions (HCl, pH 2.0) is achieved for Cu(II) in the presence of frequently encountered metal ions in natural and waste waters such as Fe(III), Al(III), Zn(II), Cd(II), Pb(II), Ca(II), Mg(II), and Ni(II). The laminated PBS consists of a PIM sensing disc (2mm in diameter) attached to the centre of a circular hydrophilic zone (7 mm in diameter) pretreated with 0.01 M HCl. This hydrophilic zone separates the sample port (a circular hole in the plastic cover) from the PIM sensing disc. After introducing 19.2 µL of a sample/standard solution to the sample port, Cu(II) diffuses across the hydrophilic zone and is extracted into the PIM disc as the Cu(II)-D2EHPA complex which subsequently reacts with PAN to produce the red-purple coloured Cu(II)-PAN complex. The colour intensity of the PIM disc is measured 15 min after sample/standard introduction by scanning using a flatbed scanner. Under optimal conditions the device is characterized by a limit of detection (LOD) and limit of quantitation (LOQ) of 0.06 and 0.21 mg L(-1) Cu(II), respectively, with two linear ranges together covering the Cu(II) concentration range from 0.1 to 30.0 mg L(-1). The PBS was successfully applied to the determination of Cu(II) in hot tap water and mine tailings water.


Subject(s)
Copper/analysis , Environmental Monitoring/instrumentation , Membranes, Artificial , Paper , Water/analysis , Cations, Divalent/analysis , Equipment Design , Limit of Detection , Naphthols/chemistry , Phosphoric Acids/chemistry , Phthalic Acids/chemistry , Polyvinyl Chloride/chemistry
2.
Talanta ; 82(4): 1156-63, 2010 Sep 15.
Article in English | MEDLINE | ID: mdl-20801312

ABSTRACT

A general mathematical model of a flow-through optical chemical sensor prepared by the immobilization of 1-(2'-pyridylazo)-2-naphthol (PAN) into a commercial Nafion membrane was developed. The model takes into account the preparation of the optode membrane and in our opinion the most important chemical and physical processes involved in the generation of the analytical signal. The following model parameters were determined separately from the experimental verification of the model: aqueous diffusion coefficient of CuSO(4) - 8.75 x 10(-10)m(2)s(-1); membrane self-diffusion coefficient of the Cu(2+)-PAN complex and Cu(2+) - 1.87 x 10(-16) and 6.00 x 10(-15)m(2)s(-1), respectively; Nafion/water ion-exchange equilibrium constants for the Cu(2+)-PAN complex and Cu(2+) - 109.2 and 3.65 x 10(-3), respectively. Very good agreement was obtained between the experimental optode response and the model predictions thus showing that the model developed could be used successfully for the mathematical description and optimization of the PAN/Nafion optode as well as of other ion-exchange membrane based optodes having a similar response mechanism.

3.
Talanta ; 68(2): 298-304, 2005 Dec 15.
Article in English | MEDLINE | ID: mdl-18970321

ABSTRACT

A flow injection-column preconcentration-hydride generation atomic absorption spectrophotometric (FI-column-HGAAS) method was developed for determining mug/l levels of As(III) and As(V) in water samples, with simultaneous preconcentration and speciation. The speciation scheme involved determining As(V) at neutral pH and As(III+V) at pH 12, with As(III) obtained by difference. The enrichment factor (EF) increased with increase in sample loading volume from 2.5 to 10ml, and for preconcentration using the chloride-form anion exchange column, EFs ranged from 5 to 48 for As(V) and 4 to 24 for As(III+V), with corresponding detection limits of 0.03-0.3 and 0.07-0.3mug/l. Linear concentration range (LCR) also varied with sample loading volume, and for a 5-ml sample was 0.3-5 and 0.2-8mug/l for As(V) and As(III+V), respectively. Sample throughput, which decreased with increase in sample volume, was 8-17 samples/h. For the hydroxide-form column, the EFS for 2.5-10ml samples were 3-23 for As(V) and 2-15 for As(III+V), with corresponding detection limits of 0.07-0.4 and 0.1-0.5mug/l. The LCR for a 5-ml sample was 0.3-10mug/l for As(V) and 0.2-20mug/l for As(III+V). Sample throughput was 10-20 samples/h. The developed method has been effectively applied to tap water and mineral water samples, with recoveries ranging from 90 to 102% for 5-ml samples passed through the two columns.

4.
Talanta ; 64(5): 1317-22, 2004 Dec 15.
Article in English | MEDLINE | ID: mdl-18969748

ABSTRACT

An optical chemical sensor responsive to selenium (SeO(3)(2-)) in water samples was developed. Its matrix was nafion membrane suffused with an organic ligand p-amino-p'-methoxydiphenylamine or variamine blue (VB). The method of analysis was flow injection (FI) where in the membrane was fixed in a flow-through demountable measuring cell and connected to a computer-controlled simple spectrophotometer. Variamine blue was previously established to determine amounts of selenium in water and other media by means of a spectrophotometer. The method involved reacting selenite with potassium iodide to generate iodine gas, which reacts with variamine blue to form a colored species. Experimental results showed the optrode to be an effective tool in analyzing the selenium content of water samples particularly for remote or in situ applications. Interference studies proved that the method is free of intervention from tested ions.

5.
Talanta ; 58(6): 1063-9, 2002 Dec 06.
Article in English | MEDLINE | ID: mdl-18968840

ABSTRACT

A copper-sensitive optical chemical sensor (optrode) is described. The optrode is based on a Nafion membrane and an immobilized organic ligand coupled with a flow injection (FI) system. The FI system includes a flow-through removable measuring cell and a simple spectrophotometer. Owing to the miniature size of the system and the efficient use of optical fibers, this optrode is well suited for monitoring environmental water samples. The success of the described optrode system depends on the effectiveness of the FI reagent delivery system. Optimum contact time with the membrane (as determined by the reagent flow rates) and the injected sample volume are critical. Environmental water samples were analyzed for copper content using the optimized optrode system. To validate the optrode's performance, the same water samples were analyzed using the atomic absorption spectrophotometer.

SELECTION OF CITATIONS
SEARCH DETAIL
...