Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
2.
Mamm Genome ; 10(2): 140-4, 1999 Feb.
Article in English | MEDLINE | ID: mdl-9922394

ABSTRACT

BLAST searches of 61 equine microsatellite sequences revealed two related families of retroposons. The first family included seven markers, all of which showed significant homology to the Equine Repetitive Element-1 (ERE-1) Short Interspersed Nucleotide Element (SINE) sequence. Length of homology ranged from 76 to 171 bases with identities to the ERE-1 consensus sequence ranging from 71% to 83%. The second family referred to as Equine Repetitive Element-2 (ERE-2) has a consensus sequence that showed homology to ERE-1 over approximately 60 bases. These 60 bases comprised subunit I. Sequence comparisons for the two retroposons led to the identification of a subunit II, subunit III, as well as the tRNAser subunit. The subunit structure of ERE-1 was tRNAser-I-II. By contrast, the subunit structure of ERE-2 was I-III-III. The nine markers related to ERE-2 showed homology lengths ranging from 84 to 163 bases with identities ranging from 75% to 99%. In addition to being present in microsatellites, ERE-2 appeared in three separate equine genes. It occurred in an intron of DNA-PK, in an untranslated region as well as in the promoter of PGHS, and in the coding region of PAM. The amino acids corresponding to the ERE-2 sequence in PAM were not present in the human or mouse PAM homologs. These amino acids associated with the ERE-2 sequence were present on the cytosolic side of the transmembrane domain of the PAM enzyme. Microsatellite markers in the ERE-1 and ERE-2 families were found throughout the genus equus and also for rhinoceros, indicating that the appearance of both retroposons predates the divergence of equids from the other perissodactyls. The markers did not amplify in human or bovine DNA. This indicated that ERE-1 and ERE-2 are, at least, perissodactyl specific.


Subject(s)
DNA-Binding Proteins , Horses/genetics , Interspersed Repetitive Sequences , Microsatellite Repeats , Amidine-Lyases/genetics , Animals , Base Sequence , Chromosome Mapping/veterinary , Cyclooxygenase 2 , DNA/genetics , DNA-Activated Protein Kinase , Genes/genetics , Isoenzymes/genetics , Molecular Sequence Data , Polymerase Chain Reaction , Prostaglandin-Endoperoxide Synthases/genetics , Protein Serine-Threonine Kinases/genetics , Sequence Alignment , Sequence Homology, Nucleic Acid , Species Specificity
11.
J Virol ; 62(8): 2850-8, 1988 Aug.
Article in English | MEDLINE | ID: mdl-2455821

ABSTRACT

The molecular structure of the equine herpesvirus type 1 (EHV-1) gene encoding glycoprotein 13 (gp13) was analyzed. The gene is contained within a 1.8-kilobase AccI-EcoRI restriction fragment mapping at map coordinates 0.136 to 0.148 in the UL region of the EHV-1 genome and is transcribed from right to left. Determination of the nucleotide sequence of the DNA fragment revealed a complete transcriptional unit composed of typical regulatory promoter elements upstream to a long open reading frame (1,404 base pairs) that encoded a 468-amino-acid primary translation product of 51 kilodaltons. The predicted protein has the characteristic features of a membrane-spanning protein: an N-terminal signal sequence, a hydrophobic membrane anchor region, a charged C-terminal cytoplasmic tail, and an exterior domain with nine potential N-glycosylation sites. The EHV-1 DNA sequences expressed in lambda gt11 as gp13 epitopes were present in the open reading frame. Amino acid sequences composing a major antigenic site, recognized by 35% of a panel of 42 anti-gp13 monoclonal antibodies, were identified in the N-terminal surface domain of the deduced gp13 molecule. Comparison of the EHV-1 gp13 DNA sequence with that encoding glycoproteins of other alphaherpesviruses revealed no detectable homology. However, a search for homology at the amino acid level showed regions of significant sequence similarity between the amino acids of the carboxy half of EHV-1 gp13 and those of the same region of gC-like glycoproteins of herpes simplex virus (gC-1 and gC-2), pseudorabies herpesvirus (gIII), and varicella-zoster virus (gp66). The sequences of the N-terminal portion of gp13, by contrast, were much less conserved. The results of these studies indicate that EHV-1 gp13 is the structural homolog of herpes simplex virus glycoprotein C and further suggest that the epitope-containing N-terminal amino acid sequences of the herpesvirus gC-like glycoproteins have undergone more extensive evolutionary divergence than the C-terminal sequences.


Subject(s)
Genes, Viral , Herpesviridae/genetics , Viral Envelope Proteins/genetics , Amino Acid Sequence , Animals , Antigens, Viral/genetics , Base Sequence , Codon , DNA, Viral/genetics , Epitopes , Horses/microbiology , Molecular Sequence Data , Protein Conformation , Solubility
SELECTION OF CITATIONS
SEARCH DETAIL
...