Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
Add more filters










Publication year range
1.
Proc Natl Acad Sci U S A ; 119(15): e2120003119, 2022 04 12.
Article in English | MEDLINE | ID: mdl-35377795

ABSTRACT

Lymphatic filariasis is a vector-borne neglected tropical disease prioritized for global elimination. The filarial nematodes that cause the disease host a symbiotic bacterium, Wolbachia, which has been targeted using antibiotics, leading to cessation of parasite embryogenesis, waning of circulating larvae (microfilariae [mf]), and gradual cure of adult infection. One of the benefits of the anti-Wolbachia mode of action is that it avoids the rapid killing of mf, which can drive inflammatory adverse events. However, mf depleted of Wolbachia persist for several months in circulation, and thus patients treated with antibiotics are assumed to remain at risk for transmitting infections. Here, we show that Wolbachia-depleted mf rapidly lose the capacity to develop in the mosquito vector through a defect in exsheathment and inability to migrate through the gut wall. Transcriptomic and Western blotting analyses demonstrate that chitinase, an enzyme essential for mf exsheathment, is down-regulated in Wolbachia-depleted mf and correlates with their inability to exsheath and escape the mosquito midgut. Supplementation of in vitro cultures of Wolbachia-depleted mf with chitinase enzymes restores their ability to exsheath to a similar level to that observed in untreated mf. Our findings elucidate a mechanism of rapid transmission-blocking activity of filariasis after depletion of Wolbachia and adds to the broad range of biological processes of filarial nematodes that are dependent on Wolbachia symbiosis.


Subject(s)
Anti-Bacterial Agents , Chitinases , Elephantiasis, Filarial , Microfilariae , Wolbachia , Animals , Anti-Bacterial Agents/pharmacology , Chitinases/genetics , Elephantiasis, Filarial/transmission , Humans , Microfilariae/enzymology , Microfilariae/growth & development , Microfilariae/microbiology , Mosquito Vectors/parasitology , Wolbachia/drug effects , Wolbachia/genetics
2.
Sci Transl Med ; 11(483)2019 03 13.
Article in English | MEDLINE | ID: mdl-30867321

ABSTRACT

There is an urgent global need for a safe macrofilaricide drug to accelerate elimination of the neglected tropical diseases onchocerciasis and lymphatic filariasis. From an anti-infective compound library, the macrolide veterinary antibiotic, tylosin A, was identified as a hit against Wolbachia This bacterial endosymbiont is required for filarial worm viability and fertility and is a validated target for macrofilaricidal drugs. Medicinal chemistry was undertaken to develop tylosin A analogs with improved oral bioavailability. Two analogs, A-1535469 and A-1574083, were selected. Their efficacy was tested against the gold-standard second-generation tetracycline antibiotics, doxycycline and minocycline, in mouse and gerbil infection models of lymphatic filariasis (Brugia malayi and Litomosoides sigmodontis) and onchocerciasis (Onchocerca ochengi). A 1- or 2-week course of oral A-1535469 or A-1574083 provided >90% Wolbachia depletion from nematodes in infected animals, resulting in a block in embryogenesis and depletion of microfilarial worm loads. The two analogs delivered comparative or superior efficacy compared to a 3- to 4-week course of doxycycline or minocycline. A-1574083 (now called ABBV-4083) was selected for further preclinical testing. Cardiovascular studies in dogs and toxicology studies in rats and dogs revealed no adverse effects at doses (50 mg/kg) that achieved plasma concentrations >10-fold above the efficacious concentration. A-1574083 (ABBV-4083) shows potential as an anti-Wolbachia macrolide with an efficacy, pharmacology, and safety profile that is compatible with a short-term oral drug course for treating lymphatic filariasis and onchocerciasis.


Subject(s)
Elephantiasis, Filarial/drug therapy , Elephantiasis, Filarial/microbiology , Macrolides/administration & dosage , Macrolides/therapeutic use , Onchocerciasis/drug therapy , Onchocerciasis/microbiology , Wolbachia/physiology , Administration, Oral , Animals , Disease Models, Animal , Elephantiasis, Filarial/blood , Female , Macrolides/adverse effects , Male , Mice, Inbred BALB C , Mice, SCID , Onchocerciasis/blood , Treatment Outcome , Tylosin/blood , Tylosin/chemical synthesis , Tylosin/chemistry , Tylosin/therapeutic use
3.
J Med Chem ; 62(5): 2521-2540, 2019 03 14.
Article in English | MEDLINE | ID: mdl-30730745

ABSTRACT

A series of pleuromutilins modified by introduction of a boron-containing heterocycle on C(14) of the polycyclic core are described. These analogs were found to be potent anti- Wolbachia antibiotics and, as such, may be useful in the treatment of filarial infections caused by Onchocerca volvulus, resulting in Onchocerciasis or river blindness, or Wuchereria bancrofti and Brugia malayi and related parasitic nematodes resulting in lymphatic filariasis. These two important neglected tropical diseases disproportionately impact patients in the developing world. The lead preclinical candidate compound containing 7-fluoro-6-oxybenzoxaborole (15, AN11251) was shown to have good in vitro anti- Wolbachia activity and physicochemical and pharmacokinetic properties providing high exposure in plasma. The lead was effective in reducing the Wolbachia load in filarial worms following oral administration to mice.


Subject(s)
Boron/pharmacology , Diterpenes/pharmacology , Elephantiasis, Filarial/drug therapy , Filaricides/therapeutic use , Onchocerciasis/drug therapy , Polycyclic Compounds/pharmacology , Wolbachia/drug effects , Wuchereria bancrofti/drug effects , Animals , Boron/chemistry , Diterpenes/chemistry , Filaricides/pharmacokinetics , Filaricides/pharmacology , Mice , Mice, Inbred BALB C , Mice, SCID , Polycyclic Compounds/chemistry , Pleuromutilins
4.
Nat Commun ; 10(1): 11, 2019 01 02.
Article in English | MEDLINE | ID: mdl-30602718

ABSTRACT

Nematodes causing lymphatic filariasis and onchocerciasis rely on their bacterial endosymbiont, Wolbachia, for survival and fecundity, making Wolbachia a promising therapeutic target. Here we perform a high-throughput screen of AstraZeneca's 1.3 million in-house compound library and identify 5 novel chemotypes with faster in vitro kill rates (<2 days) than existing anti-Wolbachia drugs that cure onchocerciasis and lymphatic filariasis. This industrial scale anthelmintic neglected tropical disease (NTD) screening campaign is the result of a partnership between the Anti-Wolbachia consortium (A∙WOL) and AstraZeneca. The campaign was informed throughout by rational prioritisation and triage of compounds using cheminformatics to balance chemical diversity and drug like properties reducing the chance of attrition from the outset. Ongoing development of these multiple chemotypes, all with superior time-kill kinetics than registered antibiotics with anti-Wolbachia activity, has the potential to improve upon the current therapeutic options and deliver improved, safer and more selective macrofilaricidal drugs.


Subject(s)
Drug Discovery , Filaricides/analysis , High-Throughput Screening Assays , Aedes , Animals , Cell Line , Wolbachia
5.
Proc Natl Acad Sci U S A ; 116(4): 1414-1419, 2019 01 22.
Article in English | MEDLINE | ID: mdl-30617067

ABSTRACT

Onchocerciasis and lymphatic filariasis are two neglected tropical diseases that together affect ∼157 million people and inflict severe disability. Both diseases are caused by parasitic filarial nematodes with elimination efforts constrained by the lack of a safe drug that can kill the adult filaria (macrofilaricide). Previous proof-of-concept human trials have demonstrated that depleting >90% of the essential nematode endosymbiont bacterium, Wolbachia, using antibiotics, can lead to permanent sterilization of adult female parasites and a safe macrofilaricidal outcome. AWZ1066S is a highly specific anti-Wolbachia candidate selected through a lead optimization program focused on balancing efficacy, safety and drug metabolism/pharmacokinetic (DMPK) features of a thienopyrimidine/quinazoline scaffold derived from phenotypic screening. AWZ1066S shows superior efficacy to existing anti-Wolbachia therapies in validated preclinical models of infection and has DMPK characteristics that are compatible with a short therapeutic regimen of 7 days or less. This candidate molecule is well-positioned for onward development and has the potential to make a significant impact on communities affected by filariasis.


Subject(s)
Anti-Bacterial Agents/pharmacology , Wolbachia/drug effects , Animals , Elephantiasis, Filarial/drug therapy , Elephantiasis, Filarial/microbiology , Female , Male , Mice , Mice, SCID , Onchocerciasis/drug therapy , Onchocerciasis/microbiology , Pyrimidines/pharmacology , Quinazolines/pharmacology
6.
Gates Open Res ; 3: 1734, 2019.
Article in English | MEDLINE | ID: mdl-32596646

ABSTRACT

Background:  Results from an increasing number of studies suggest that mosquito excreta/feces (E/F) testing has considerable potential to serve as a supplement for traditional molecular xenomonitoring techniques. However, as the catalogue of possible use-cases for this methodology expands, and the list of amenable pathogens grows, a number of fundamental methods-based questions remain. Answering these questions is critical to maximizing the utility of this approach and to facilitating its successful implementation as an effective tool for molecular xenomonitoring. Methods:  Utilizing E/F produced by mosquitoes or tsetse flies experimentally exposed to Brugia malayi, Plasmodium falciparum, or Trypanosoma brucei brucei, factors such as limits of detection, throughput of testing, adaptability to use with competent- and incompetent-vector species, and effects of additional blood feedings post parasite-exposure were evaluated.  Two platforms for the detection of pathogen signal (quantitative real-time PCR and digital PCR [dPCR]) were also compared, with strengths and weaknesses examined for each.       Results:  Experimental results indicated that high throughput testing is possible when evaluating mosquito E/F for the presence of either B. malayi or P. falciparum from both competent- and incompetent-vector mosquito species.  Furthermore, following exposure to pathogen, providing mosquitoes with a second, uninfected bloodmeal did not expand the temporal window for E/F collection during which pathogen detection was possible.  However, this collection window did appear longer in E/F collected from tsetse flies following exposure to T. b. brucei.  Testing also suggested that dPCR may facilitate detection through its increased sensitivity.  Unfortunately, logistical obstacles will likely make the large-scale use of dPCR impractical for this purpose. Conclusions:  By examining many E/F testing variables, expansion of this technology to a field-ready platform has become increasingly feasible.  However, translation of this methodology from the lab to the field will first require the completion of field-based pilot studies aimed at assessing the efficacy of E/F screening.

7.
PLoS Pathog ; 14(3): e1006949, 2018 03.
Article in English | MEDLINE | ID: mdl-29547639

ABSTRACT

Eosinophils are effectors in immunity to tissue helminths but also induce allergic immunopathology. Mechanisms of eosinophilia in non-mucosal tissues during infection remain unresolved. Here we identify a pivotal function of tissue macrophages (Mϕ) in eosinophil anti-helminth immunity using a BALB/c mouse intra-peritoneal Brugia malayi filarial infection model. Eosinophilia, via C-C motif chemokine receptor (CCR)3, was necessary for immunity as CCR3 and eosinophil impairments rendered mice susceptible to chronic filarial infection. Post-infection, peritoneal Mϕ populations proliferated and became alternatively-activated (AAMϕ). Filarial AAMϕ development required adaptive immunity and interleukin-4 receptor-alpha. Depletion of Mϕ prior to infection suppressed eosinophilia and facilitated worm survival. Add back of filarial AAMϕ in Mϕ-depleted mice recapitulated a vigorous eosinophilia. Transfer of filarial AAMϕ into Severe-Combined Immune Deficient mice mediated immunological resistance in an eosinophil-dependent manner. Exogenous IL-4 delivery recapitulated tissue AAMϕ expansions, sustained eosinophilia and mediated immunological resistance in Mϕ-intact SCID mice. Co-culturing Brugia with filarial AAMϕ and/or filarial-recruited eosinophils confirmed eosinophils as the larvicidal cell type. Our data demonstrates that IL-4/IL-4Rα activated AAMϕ orchestrate eosinophil immunity to filarial tissue helminth infection.


Subject(s)
Brugia malayi/pathogenicity , Eosinophilia/immunology , Filariasis/immunology , Interleukin-4/pharmacology , Macrophages/immunology , Receptors, CCR3/metabolism , Animals , Antineoplastic Agents/pharmacology , Brugia malayi/drug effects , Cytokines/genetics , Cytokines/metabolism , Eosinophilia/drug therapy , Eosinophilia/parasitology , Female , Filariasis/drug therapy , Filariasis/parasitology , Macrophages/drug effects , Macrophages/parasitology , Male , Mice , Mice, Inbred BALB C , Mice, SCID , Receptors, CCR3/genetics
10.
Proc Natl Acad Sci U S A ; 114(45): E9712-E9721, 2017 11 07.
Article in English | MEDLINE | ID: mdl-29078351

ABSTRACT

Elimination of filariasis requires a macrofilaricide treatment that can be delivered within a 7-day period. Here we have identified a synergy between the anthelmintic albendazole (ABZ) and drugs depleting the filarial endosymbiont Wolbachia, a proven macrofilaricide target, which reduces treatment from several weeks to 7 days in preclinical models. ABZ had negligible effects on Wolbachia but synergized with minocycline or rifampicin (RIF) to deplete symbionts, block embryogenesis, and stop microfilariae production. Greater than 99% Wolbachia depletion following 7-day combination of RIF+ABZ also led to accelerated macrofilaricidal activity. Thus, we provide preclinical proof-of-concept of treatment shortening using antibiotic+ABZ combinations to deliver anti-Wolbachia sterilizing and macrofilaricidal effects. Our data are of immediate public health importance as RIF+ABZ are registered drugs and thus immediately implementable to deliver a 1-wk macrofilaricide. They also suggest that novel, more potent anti-Wolbachia drugs under development may be capable of delivering further treatment shortening, to days rather than weeks, if combined with benzimidazoles.


Subject(s)
Albendazole/pharmacology , Anti-Bacterial Agents/pharmacology , Filariasis/drug therapy , Wolbachia/drug effects , Animals , Benzimidazoles/pharmacology , Brugia malayi/microbiology , Drug Synergism , Female , Male , Mice , Mice, Inbred BALB C , Minocycline/pharmacology , Rifampin/pharmacology
11.
Sci Adv ; 3(9): eaao1551, 2017 09.
Article in English | MEDLINE | ID: mdl-28959730

ABSTRACT

Lymphatic filariasis and onchocerciasis are two important neglected tropical diseases (NTDs) that cause severe disability. Control efforts are hindered by the lack of a safe macrofilaricidal drug. Targeting the Wolbachia bacterial endosymbionts in these parasites with doxycycline leads to a macrofilaricidal outcome, but protracted treatment regimens and contraindications restrict its widespread implementation. The Anti-Wolbachia consortium aims to develop improved anti-Wolbachia drugs to overcome these barriers. We describe the first screening of a large, diverse compound library against Wolbachia. This whole-organism screen, streamlined to reduce bottlenecks, produced a hit rate of 0.5%. Chemoinformatic analysis of the top 50 hits led to the identification of six structurally diverse chemotypes, the disclosure of which could offer interesting avenues of investigation to other researchers active in this field. An example of hit-to-lead optimization is described to further demonstrate the potential of developing these high-quality hit series as safe, efficacious, and selective anti-Wolbachia macrofilaricides.


Subject(s)
Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Drug Evaluation, Preclinical/methods , Small Molecule Libraries , Wolbachia/drug effects , Cluster Analysis , Computational Biology/methods , Drug Discovery/methods , Humans , Reproducibility of Results , Workflow
12.
Sci Rep ; 7(1): 210, 2017 03 16.
Article in English | MEDLINE | ID: mdl-28303006

ABSTRACT

Lymphatic filariasis (LF) and onchocerciasis are priority neglected tropical diseases targeted for elimination. The only safe drug treatment with substantial curative activity against the filarial nematodes responsible for LF (Brugia malayi, Wuchereria bancrofti) or onchocerciasis (Onchocerca volvulus) is doxycycline. The target of doxycycline is the essential endosymbiont, Wolbachia. Four to six weeks doxycycline therapy achieves >90% depletion of Wolbachia in worm tissues leading to blockade of embryogenesis, adult sterility and premature death 18-24 months post-treatment. Long treatment length and contraindications in children and pregnancy are obstacles to implementing doxycycline as a public health strategy. Here we determine, via preclinical infection models of Brugia malayi or Onchocerca ochengi that elevated exposures of orally-administered rifampicin can lead to Wolbachia depletions from filariae more rapidly than those achieved by doxycycline. Dose escalation of rifampicin achieves >90% Wolbachia depletion in time periods of 7 days in B. malayi and 14 days in O. ochengi. Using pharmacokinetic-pharmacodynamic modelling and mouse-human bridging analysis, we conclude that clinically relevant dose elevations of rifampicin, which have recently been determined as safe in humans, could be administered as short courses to filariasis target populations with potential to reduce anti-Wolbachia curative therapy times to between one and two weeks.


Subject(s)
Anti-Bacterial Agents/administration & dosage , Elephantiasis, Filarial/drug therapy , Filarioidea/microbiology , Onchocerciasis/drug therapy , Rifampin/administration & dosage , Wolbachia/drug effects , Administration, Oral , Animals , Anti-Bacterial Agents/pharmacology , Brugia malayi/drug effects , Brugia malayi/microbiology , Brugia malayi/physiology , DNA, Bacterial/drug effects , Disease Models, Animal , Elephantiasis, Filarial/parasitology , Embryonic Development/drug effects , Filarioidea/drug effects , Filarioidea/physiology , Humans , Mice , Onchocerca volvulus/drug effects , Onchocerca volvulus/microbiology , Onchocerca volvulus/physiology , Onchocerciasis/parasitology , Rifampin/pharmacology , Treatment Outcome , Wolbachia/genetics , Wuchereria bancrofti/drug effects , Wuchereria bancrofti/microbiology , Wuchereria bancrofti/physiology
13.
Gates Open Res ; 1: 7, 2017.
Article in English | MEDLINE | ID: mdl-29377042

ABSTRACT

Background: Molecular xenomonitoring (MX), the testing of insect vectors for the presence of human pathogens, has the potential to provide a non-invasive and cost-effective method for monitoring the prevalence of disease within a community. Current MX methods require the capture and processing of large numbers of mosquitoes, particularly in areas of low endemicity, increasing the time, cost and labour required. Screening the excreta/feces (E/F) released from mosquitoes, rather than whole carcasses, improves the throughput by removing the need to discriminate vector species since non-vectors release ingested pathogens in E/F. It also enables larger numbers of mosquitoes to be processed per pool. However, this new screening approach requires a method of efficiently collecting E/F. Methods: We developed a cone with a superhydrophobic surface to allow for the efficient collection of E/F. Using mosquitoes exposed to either Plasmodium falciparum, Brugia malayi or Trypanosoma brucei brucei, we tested the performance of the superhydrophobic cone alongside two other collection methods. Results: All collection methods enabled the detection of DNA from the three parasites. Using the superhydrophobic cone to deposit E/F into a small tube provided the highest number of positive samples (16 out of 18) and facilitated detection of parasite DNA in E/F from individual mosquitoes. Further tests showed that following a simple washing step, the cone can be reused multiple times, further improving its cost-effectiveness. Conclusions: Incorporating the superhydrophobic cone into mosquito traps or holding containers could provide a simple and efficient method for collecting E/F. Where this is not possible, swabbing the container or using the washing method facilitates the detection of the three parasites used in this study.

14.
Sci Rep ; 6: 23458, 2016 Mar 21.
Article in English | MEDLINE | ID: mdl-26996237

ABSTRACT

Lymphatic filariasis and onchocerciasis are parasitic helminth diseases, which cause severe morbidities such as elephantiasis, skin disease and blindness, presenting a major public health burden in endemic communities. The anti-Wolbachia consortium (A·WOL: http://www.a-wol.com/) has identified a number of registered antibiotics that target the endosymbiotic bacterium, Wolbachia, delivering macrofilaricidal activity. Here we use pharmacokinetics/pharmacodynamics (PK/PD) analysis to rationally develop an anti-Wolbachia chemotherapy by linking drug exposure to pharmacological effect. We compare the pharmacokinetics and anti-Wolbachia efficacy in a murine Brugia malayi model of minocycline versus doxycycline. Doxycycline exhibits superior PK in comparison to minocycline resulting in a 3-fold greater exposure in SCID mice. Monte-Carlo simulations confirmed that a bi-daily 25-40 mg/Kg regimen is bioequivalent to a clinically effective 100-200 mg/day dose for these tetracyclines. Pharmacodynamic studies showed that minocycline depletes Wolbachia more effectively than doxycycline (99.51% vs. 90.35%) after 28 day 25 mg/Kg bid regimens with a more potent block in microfilarial production. PK/PD analysis predicts that minocycline would be expected to be 1.7 fold more effective than doxycycline in man despite lower exposure in our infection models. Our findings warrant onward clinical investigations to examine the clinical efficacy of minocycline treatment regimens against lymphatic filariasis and onchocerciasis.


Subject(s)
Anti-Bacterial Agents/administration & dosage , Elephantiasis, Filarial/prevention & control , Minocycline/administration & dosage , Wolbachia/drug effects , Animals , Anti-Bacterial Agents/pharmacokinetics , Brugia malayi/drug effects , Brugia malayi/parasitology , Disease Models, Animal , Dose-Response Relationship, Drug , Doxycycline/administration & dosage , Doxycycline/pharmacokinetics , Elephantiasis, Filarial/parasitology , Female , Male , Mice , Mice, Inbred BALB C , Mice, SCID , Minocycline/pharmacokinetics , Wolbachia/pathogenicity
15.
J Biomol Screen ; 20(1): 64-9, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25278497

ABSTRACT

There is an urgent need to develop new, safe, and affordable macrofilaricidal drugs for onchocerciasis and lymphatic filariasis treatment and control. The Anti-Wolbachia Consortium (A·WOL) aims to provide a novel treatment with macrofilaricidal activity by targeting the essential bacterial symbiont Wolbachia. The consortium is currently screening a diverse range of compounds to find new chemical space to drive this drug discovery initiative and address this unmet demand. To increase the throughput and capacity of the A·WOL cell-based screen, we have developed a 384-well format assay using a high-content imaging system (Operetta) in conjunction with optimized Wolbachia growth dynamics in the C6/36 Aedes albopictus mosquito cell line. This assay uses texture analysis of cells stained with SYTO 11 as a direct measure of bacterial load. This validated assay has dramatically increased the capacity and throughput of the A·WOL compound library screening program 25-fold, enriching the number of new anti-Wolbachia hits identified for further development as potential macrofilaricides for onchocerciasis and lymphatic filariasis.


Subject(s)
Anti-Bacterial Agents/pharmacology , Antinematodal Agents/pharmacology , Drug Discovery/methods , High-Throughput Screening Assays/methods , Wolbachia/drug effects , Wolbachia/physiology , Animals , Anti-Bacterial Agents/therapeutic use , Antinematodal Agents/therapeutic use , Cell Line , Dose-Response Relationship, Drug , Drug Discovery/standards , Elephantiasis, Filarial/drug therapy , High-Throughput Screening Assays/standards , Humans , Neglected Diseases/drug therapy , Onchocerca/microbiology , Onchocerciasis/drug therapy , Reproducibility of Results
16.
Proc Natl Acad Sci U S A ; 111(25): 9205-10, 2014 06 24.
Article in English | MEDLINE | ID: mdl-24927555

ABSTRACT

Variation in venom composition is a ubiquitous phenomenon in snakes and occurs both interspecifically and intraspecifically. Venom variation can have severe outcomes for snakebite victims by rendering the specific antibodies found in antivenoms ineffective against heterologous toxins found in different venoms. The rapid evolutionary expansion of different toxin-encoding gene families in different snake lineages is widely perceived as the main cause of venom variation. However, this view is simplistic and disregards the understudied influence that processes acting on gene transcription and translation may have on the production of the venom proteome. Here, we assess the venom composition of six related viperid snakes and compare interspecific changes in the number of toxin genes, their transcription in the venom gland, and their translation into proteins secreted in venom. Our results reveal that multiple levels of regulation are responsible for generating variation in venom composition between related snake species. We demonstrate that differential levels of toxin transcription, translation, and their posttranslational modification have a substantial impact upon the resulting venom protein mixture. Notably, these processes act to varying extents on different toxin paralogs found in different snakes and are therefore likely to be as important as ancestral gene duplication events for generating compositionally distinct venom proteomes. Our results suggest that these processes may also contribute to altering the toxicity of snake venoms, and we demonstrate how this variability can undermine the treatment of a neglected tropical disease, snakebite.


Subject(s)
Crotalid Venoms , Evolution, Molecular , Proteome , Viperidae , Animals , Crotalid Venoms/genetics , Crotalid Venoms/metabolism , Gene Expression Regulation/physiology , Neglected Diseases/drug therapy , Protein Biosynthesis/physiology , Protein Processing, Post-Translational/physiology , Proteome/genetics , Proteome/metabolism , Snake Bites/drug therapy , Species Specificity , Transcription, Genetic/physiology , Viperidae/genetics , Viperidae/metabolism
17.
Proc Natl Acad Sci U S A ; 109(25): E1638-46, 2012 Jun 19.
Article in English | MEDLINE | ID: mdl-22645363

ABSTRACT

Wolbachia are widespread and abundant intracellular symbionts of arthropods and filarial nematodes. Their symbiotic relationships encompass obligate mutualism, commensalism, parasitism, and pathogenicity. A consequence of these diverse associations is that Wolbachia encounter a wide range of host cells and intracellular immune defense mechanisms of invertebrates, which they must evade to maintain their populations and spread to new hosts. Here we show that autophagy, a conserved intracellular defense mechanism and regulator of cell homeostasis, is a major immune recognition and regulatory process that determines the size of Wolbachia populations. The regulation of Wolbachia populations by autophagy occurs across all distinct symbiotic relationships and can be manipulated either chemically or genetically to modulate the Wolbachia population load. The recognition and activation of host autophagy is particularly apparent in rapidly replicating strains of Wolbachia found in somatic tissues of Drosophila and filarial nematodes. In filarial nematodes, which host a mutualistic association with Wolbachia, the use of antibiotics such as doxycycline to eliminate Wolbachia has emerged as a promising approach to their treatment and control. Here we show that the activation of host nematode autophagy reduces bacterial loads to the same magnitude as antibiotic therapy; thus we identify a bactericidal mode of action targeting Wolbachia that can be exploited for the development of chemotherapeutic agents against onchocerciasis, lymphatic filariasis, and heartworm.


Subject(s)
Autophagy , Symbiosis , Wolbachia/physiology , Animals , Bacterial Proteins/metabolism , Brugia malayi/metabolism , Brugia malayi/microbiology , Cell Line/metabolism , Drosophila melanogaster/metabolism , Nematoda/microbiology , Subcellular Fractions/metabolism , TOR Serine-Threonine Kinases/antagonists & inhibitors , TOR Serine-Threonine Kinases/metabolism
18.
PLoS Negl Trop Dis ; 4(10): e851, 2010 Oct 26.
Article in English | MEDLINE | ID: mdl-21049058

ABSTRACT

BACKGROUND: Snakebite is a significant cause of death and disability in subsistent farming populations of sub-Saharan Africa. Antivenom is the most effective treatment of envenoming and is manufactured from IgG of venom-immunised horses/sheep but, because of complex fiscal reasons, there is a paucity of antivenom in sub-Saharan Africa. To address the plight of thousands of snakebite victims in savannah Nigeria, the EchiTAb Study Group organised the production, testing and delivery of antivenoms designed to treat envenoming by the most medically-important snakes in the region. The Echis saw-scaled vipers have a wide African distribution and medical importance. In an effort to maximise the clinical utility of scarce antivenom resources in Africa, we aimed to ascertain, at the pre-clinical level, to what extent the E. ocellatus-specific EchiTAbG antivenom, which was designed specifically for Nigeria, neutralised the lethal activity of venom from two other African species, E. pyramidum leakeyi and E. coloratus. METHODOLOGY/PRINCIPAL FINDINGS: Despite apparently quite distinctive venom protein profiles, we observed extensive cross-species similarity in the immuno-reactivity profiles of Echis species-specific antisera. Using WHO standard pre-clinical in vivo tests, we determined that the monospecific EchiTAbG antivenom was as effective at neutralising the venom-induced lethal effects of E. pyramidum leakeyi and E. coloratus as it was against E. ocellatus venom. Under the restricted conditions of this assay, the antivenom was ineffective against the lethal effects of venom from the non-African Echis species, E. carinatus sochureki. CONCLUSIONS/SIGNIFICANCE: Using WHO-recommended pre-clinical tests we have demonstrated that the new anti-E. ocellatus monospecific antivenom EchiTAbG, developed in response to the considerable snakebite-induced mortality and morbidity in Nigeria, neutralised the lethal effects of venoms from Echis species representing each taxonomic group of this genus in Africa. This suggests that this monospecific antivenom has potential to treat envenoming by most, perhaps all, African Echis species.


Subject(s)
Antibodies, Neutralizing/pharmacology , Antivenins/pharmacology , Viper Venoms/antagonists & inhibitors , Viperidae , Africa South of the Sahara , Animals , Antibodies, Neutralizing/immunology , Antivenins/immunology , Disease Models, Animal , Drug Evaluation, Preclinical , Electrophoresis, Polyacrylamide Gel , Enzyme-Linked Immunosorbent Assay , Humans , Immunoblotting , Mice , Neutralization Tests , Snake Bites/therapy , Survival Analysis , Viper Venoms/immunology
19.
Toxicon ; 56(4): 596-603, 2010 Sep 15.
Article in English | MEDLINE | ID: mdl-20547172

ABSTRACT

Antivenom is the most effective treatment of snake envenoming and is manufactured from the IgG of venom-immunised horses and sheep. Camelids have a unique IgG structure which may account for the report that camel IgG is less immunogenic and less likely to activate complement than equine or ovine IgG. Camelid IgG therefore offers potential safety advantages over conventional IgGs used for antivenom manufacture. The reported thermostability of camelid IgG also holds promise in the inclusion of a relatively inexpensive anti-microbial heat step in antivenom manufacture. However, these potential benefits of camelid IgG would be much reduced if any one of the three camel IgG subclasses dominated, or under-performed, the serological response of camels to venom immunisation because of the prohibitive manufacturing costs of having to purify, or exclude, one or more IgG subclasses. This study compared the titre, antigen-specificity, relative avidity and ability to neutralise the haemorrhagic and coagulopathic effects of Echis ocellatus venom of each IgG subclass from the venom-immunised camels. The results demonstrated that no one IgG subclass consistently out-performed or under-performed the others in their immunoreactivity to venom proteins and ability to neutralise venom-induced pathologies. We concluded therefore that IgG taken from a pool of immunised camels could be processed into antivenom without requiring the implementation of expensive chromatographic separations to select, or indeed to exclude, a specific IgG subclass. The immunoreactivity of the heavy and light chain, IgG1 subclass, was markedly more vulnerable to extreme heat treatment than the heavy chain-only IgG2 and IgG3 subclasses.


Subject(s)
Antivenins/immunology , Camelus/immunology , Immunoglobulin G/immunology , Viper Venoms/immunology , Animals , Antibody Specificity , Antivenins/pharmacology , Blood Coagulation/drug effects , Hemorrhage/therapy , Hot Temperature , Immunoglobulin G/pharmacology , Immunoglobulin G/therapeutic use , Mice , Snake Bites/therapy , Viper Venoms/antagonists & inhibitors , Viperidae
20.
Toxicon ; 56(3): 373-80, 2010 Sep 01.
Article in English | MEDLINE | ID: mdl-20412814

ABSTRACT

Camelid IgG has been reported to be less immunogenic, less able to activate the complement cascade and more thermostable than IgG from other mammals, and has the ability to bind antigens that are unreactive with other mammalian IgGs. We are investigating whether these attributes of camelid IgG translate into antivenom with immunological and venom-neutralising efficacy advantages over conventional equine and ovine antivenoms. The objective of this study was to determine the preclinical venom-neutralising effectiveness of IgG from camels immunised with venoms, individually or in combination, of the saw-scaled viper, Echis ocellatus, the puff adder, Bitis arietans and the spitting cobra, Naja nigricollis - the most medically-important snake species in West Africa. Neutralisation of the pathological effects of venoms from E. ocellatus, B. arietans and N. nigricollis by IgG from the venom-immunised camels, or commercial antivenom, was compared using assays of venom lethality (ED(50)), haemorrhage (MHD) and coagulopathy (MCD). The E. ocellatus venom ED(50), MHD and MCD results of the E. ocellatus monospecific camel IgG antivenom were broadly equivalent to comparable ovine (EchiTAbG, MicroPharm Ltd, Wales) and equine (SAIMR Echis, South African Vaccine Producer, South Africa) antivenoms, although the equine antivenom required half the amount of IgG. The B. arietans monospecific camel IgG neutralised the lethal effects of B. arietans venom at one fourth the concentration of the SAIMR polyspecific antivenom (a monospecific B. arietans antivenom is not available). The N. nigricollis camel IgG antivenom was ineffective (at the maximum permitted dose, 100 mul) against the lethal effects of N. nigricollis venom. All the equine polyspecific antivenoms required more than 100 microl to be effective against this venom. The polyspecific camel IgG antivenom, prepared from five camels, was effective against the venom-induced effects of E. ocellatus but not against that of B. arietans and N. nigricollis venoms. No direct correlation was evident between either camel IgG relative avidity or titre and the effectiveness of venom neutralisation in preclinical assays.


Subject(s)
Antibodies/immunology , Antivenins/biosynthesis , Snake Venoms/immunology , Animals , Camelus , Enzyme-Linked Immunosorbent Assay , Female , Male , Neutralization Tests
SELECTION OF CITATIONS
SEARCH DETAIL
...