Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Agric Food Chem ; 68(4): 1110-1117, 2020 Jan 29.
Article in English | MEDLINE | ID: mdl-31891498

ABSTRACT

Select cultivars of table olives have more desirable traits and a higher economic value. There are suspected issues with cultivar mislabeling and traceability in the supply chain. Here, we describe a method to identify cultivars by genotyping of processed olives. DNA was extracted from leaves and California-style olives of seven commonly packed cultivars. Processed olive fruits yielded relatively low DNA concentrations (0.04-0.86 µg/g), and extracts had more impurities compared with leaves. From 15 candidate SSRs, five markers showing the highest number of unique allele combinations and discriminatory power were selected. These SSRs were successfully amplified and analyzed in all cultivars of olives except one. When directly comparing any two cultivars, different allele combinations were typically present for at least four of the five SSRs. Microsatellite analysis shows potential as a simple yet robust diagnostic tool. The method can be expanded to include other cultivars, styles of table olives, and potentially other processed plant-based foods.


Subject(s)
Microsatellite Repeats , Olea/genetics , Alleles , Food Contamination/analysis , Fruit/chemistry , Fruit/classification , Fruit/genetics , Genotype , Olea/chemistry , Olea/classification
2.
Nat Biotechnol ; 34(6): 661-5, 2016 06.
Article in English | MEDLINE | ID: mdl-27111723

ABSTRACT

Asian soybean rust (ASR), caused by the fungus Phakopsora pachyrhizi, is one of the most economically important crop diseases, but is only treatable with fungicides, which are becoming less effective owing to the emergence of fungicide resistance. There are no commercial soybean cultivars with durable resistance to P. pachyrhizi, and although soybean resistance loci have been mapped, no resistance genes have been cloned. We report the cloning of a P. pachyrhizi resistance gene CcRpp1 (Cajanus cajan Resistance against Phakopsora pachyrhizi 1) from pigeonpea (Cajanus cajan) and show that CcRpp1 confers full resistance to P. pachyrhizi in soybean. Our findings show that legume species related to soybean such as pigeonpea, cowpea, common bean and others could provide a valuable and diverse pool of resistance traits for crop improvement.


Subject(s)
Cajanus/genetics , Disease Resistance/genetics , Genes, Plant/genetics , Glycine max/genetics , Glycine max/microbiology , Phakopsora pachyrhizi/physiology , Cloning, Molecular/methods , Genetic Enhancement/methods
3.
Theor Appl Genet ; 126(2): 535-48, 2013 Feb.
Article in English | MEDLINE | ID: mdl-23124389

ABSTRACT

Single nucleotide polymorphism (SNP) detection has become a marker system of choice, because of the high abundance of source polymorphisms and the ease with which allele calls are automated. Various technologies exist for the evaluation of SNP loci and previously we validated two medium throughput technologies. In this study, our goal was to utilize a 768 feature, Illumina GoldenGate assay for common bean (Phaseolus vulgaris L.) developed from conserved legume gene sequences and to use the new technology for (1) the evaluation of parental polymorphisms in a mini-core set of common bean accessions and (2) the analysis of genetic diversity in the crop. A total of 736 SNPs were scored on 236 diverse common bean genotypes with the GoldenGate array. Missing data and heterozygosity levels were low and 94 % of the SNPs were scorable. With the evaluation of the parental polymorphism genotypes, we estimated the utility of the SNP markers in mapping for inter-genepool and intra-genepool populations, the latter being of lower polymorphism than the former. When we performed the diversity analysis with the diverse genotypes, we found Illumina GoldenGate SNPs to provide equivalent evaluations as previous gene-based SNP markers, but less fine-distinctions than with previous microsatellite marker analysis. We did find, however, that the gene-based SNPs in the GoldenGate array had some utility in race structure analysis despite the low polymorphism. Furthermore the SNPs detected high heterozygosity in wild accessions which was probably a reflection of ascertainment bias. The Illumina SNPs were shown to be effective in distinguishing between the genepools, and therefore were most useful in saturation of inter-genepool genetic maps. The implications of these results for breeding in common bean are discussed as well as the advantages and disadvantages of the GoldenGate system for SNP detection.


Subject(s)
Genes, Plant/genetics , Genetic Markers , High-Throughput Screening Assays , Phaseolus/genetics , Polymorphism, Single Nucleotide/genetics , Chromosome Mapping , DNA, Plant/genetics , Genome, Plant , Genotype , Polymerase Chain Reaction
4.
Plant Cell ; 23(7): 2774-87, 2011 Jul.
Article in English | MEDLINE | ID: mdl-21742993

ABSTRACT

To form nitrogen-fixing symbioses, legume plants recognize a bacterial signal, Nod Factor (NF). The legume Medicago truncatula has two predicted NF receptors that direct separate downstream responses to its symbiont Sinorhizobium meliloti. NOD FACTOR PERCEPTION encodes a putative low-stringency receptor that is responsible for calcium spiking and transcriptional responses. LYSIN MOTIF RECEPTOR-LIKE KINASE3 (LYK3) encodes a putative high-stringency receptor that mediates bacterial infection. We localized green fluorescent protein (GFP)-tagged LYK3 in M. truncatula and found that it has a punctate distribution at the cell periphery consistent with a plasma membrane or membrane-tethered vesicle localization. In buffer-treated control roots, LYK3:GFP puncta are dynamic. After inoculation with compatible S. meliloti, LYK3:GFP puncta are relatively stable. We show that increased LYK3:GFP stability depends on bacterial NF and NF structure but that NF is not sufficient for the change in LYK3:GFP dynamics. In uninoculated root hairs, LYK3:GFP has little codistribution with mCherry-tagged FLOTILLIN4 (FLOT4), another punctate plasma membrane-associated protein required for infection. In inoculated root hairs, we observed an increase in FLOT4:mCherry and LYK3:GFP colocalization; both proteins localize to positionally stable puncta. We also demonstrate that the localization of tagged FLOT4 is altered in plants carrying a mutation that inactivates the kinase domain of LYK3. Our work indicates that LYK3 protein localization and dynamics are altered in response to symbiotic bacteria.


Subject(s)
Medicago truncatula/enzymology , Medicago truncatula/microbiology , Plant Proteins/metabolism , Receptor Protein-Tyrosine Kinases/metabolism , Sinorhizobium meliloti/physiology , Symbiosis/physiology , Cell Membrane/metabolism , Cell Membrane/ultrastructure , Lipopolysaccharides , Medicago truncatula/cytology , Membrane Proteins/genetics , Membrane Proteins/metabolism , Nitrogen Fixation/physiology , Plant Proteins/genetics , Plant Roots/metabolism , Plant Roots/microbiology , Plant Roots/ultrastructure , Plants, Genetically Modified , Protein Isoforms/genetics , Protein Isoforms/metabolism , Receptor Protein-Tyrosine Kinases/genetics , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , Sinorhizobium meliloti/pathogenicity
5.
Plant Cell ; 19(4): 1221-34, 2007 Apr.
Article in English | MEDLINE | ID: mdl-17449807

ABSTRACT

Rhizobial bacteria activate the formation of nodules on the appropriate host legume plant, and this requires the bacterial signaling molecule Nod factor. Perception of Nod factor in the plant leads to the activation of a number of rhizobial-induced genes. Putative transcriptional regulators in the GRAS family are known to function in Nod factor signaling, but these proteins have not been shown to be capable of direct DNA binding. Here, we identify an ERF transcription factor, ERF Required for Nodulation (ERN), which contains a highly conserved AP2 DNA binding domain, that is necessary for nodulation. Mutations in this gene block the initiation and development of rhizobial invasion structures, termed infection threads, and thus block nodule invasion by the bacteria. We show that ERN is necessary for Nod factor-induced gene expression and for spontaneous nodulation activated by the calcium- and calmodulin-dependent protein kinase, DMI3, which is a component of the Nod factor signaling pathway. We propose that ERN is a component of the Nod factor signal transduction pathway and functions downstream of DMI3 to activate nodulation gene expression.


Subject(s)
Lipopolysaccharides/metabolism , Medicago/physiology , Plant Proteins/metabolism , Transcription Factors/metabolism , Amino Acid Sequence , Gene Expression Regulation, Plant , Medicago/genetics , Medicago/growth & development , Molecular Sequence Data , Plant Proteins/genetics , Sequence Alignment , Sequence Homology, Amino Acid , Signal Transduction , Transcription Factors/genetics , Transcription, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL
...