Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Water Res ; 242: 120076, 2023 Aug 15.
Article in English | MEDLINE | ID: mdl-37352675

ABSTRACT

Cyanobacteria are the most prevalent bloom-forming harmful algae in freshwater systems around the world. Adequate sampling of affected systems is limited spatially, temporally, and fiscally. Remote sensing using space- or ground-based systems in large water bodies at spatial and temporal scales that are cost-prohibitive to standard water quality monitoring has proven to be useful in detecting and quantifying cyanobacterial harmful algal blooms. This study aimed to identify a regional 'universal' multispectral reflectance model that could be used for rapid, remote detection and quantification of cyanoHABs in small- to medium-sized productive reservoirs, such as those typical of Oklahoma, USA. We aimed to include these small waterbodies in our study as they are typically overlooked in larger, continental wide studies, yet are widely distributed and used for recreation and drinking water supply. We used Landsat satellite reflectance and in-situ pigment data spanning 16 years from 38 reservoirs in Oklahoma to construct empirical linear models for predicting concentrations of chlorophyll-a and phycocyanin, two key algal pigments commonly used for assessing total and cyanobacterial algal abundances, respectively. We also used ground-based hyperspectral reflectance and in-situ pigment data from seven reservoirs across five years in Oklahoma to build multispectral models predicting algal pigments from newly defined reflectance bands. Our Oklahoma-derived Landsat- and ground-based models outperformed established reflectance-pigment models on Oklahoma reservoirs. Importantly, our results demonstrate that ground-based multispectral models were far superior to Landsat-based models and the Cyanobacteria Index (CI) for detecting cyanoHABs in highly productive, small- to mid-sized reservoirs in Oklahoma, providing a valuable tool for water management and public health. While satellite-based remote sensing approaches have proven effective for relatively large systems, our novel results indicate that ground-based remote sensing may offer better cyanoHAB monitoring for small or highly dendritic turbid lakes, such as those throughout the southern Great Plains, and thus prove beneficial to efforts aimed at minimizing public health risks associated with cyanoHABs in supply and recreational waters.


Subject(s)
Cyanobacteria , Lakes , Lakes/microbiology , Remote Sensing Technology , Environmental Monitoring/methods , Water Quality , Harmful Algal Bloom
2.
Limnol Oceanogr ; 65(Suppl 1): S194-S207, 2020 Jan.
Article in English | MEDLINE | ID: mdl-32051648

ABSTRACT

Bacteria play key roles in the function and diversity of aquatic systems, but aside from study of specific bloom systems, little is known about the diversity or biogeography of bacteria associated with harmful cyanobacterial blooms (cyanoHABs). CyanoHAB species are known to shape bacterial community composition and to rely on functions provided by the associated bacteria, leading to the hypothesized cyanoHAB interactome, a coevolved community of synergistic and interacting bacteria species, each necessary for the success of the others. Here, we surveyed the microbiome associated with Microcystis aeruginosa during blooms in 12 lakes spanning four continents as an initial test of the hypothesized Microcystis interactome. We predicted that microbiome composition and functional potential would be similar across blooms globally. Our results, as revealed by 16S rRNA sequence similarity, indicate that M. aeruginosa is cosmopolitan in lakes across a 280° longitudinal and 90° latitudinal gradient. The microbiome communities were represented by a wide range of operational taxonomic units and relative abundances. Highly abundant taxa were more related and shared across most sites and did not vary with geographic distance, thus, like Microcystis, revealing no evidence for dispersal limitation. High phylogenetic relatedness, both within and across lakes, indicates that microbiome bacteria with similar functional potential were associated with all blooms. While Microcystis and the microbiome bacteria shared many genes, whole-community metagenomic analysis revealed a suite of biochemical pathways that could be considered complementary. Our results demonstrate a high degree of similarity across global Microcystis blooms, thereby providing initial support for the hypothesized Microcystis interactome.

SELECTION OF CITATIONS
SEARCH DETAIL
...