Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Elife ; 112022 01 24.
Article in English | MEDLINE | ID: mdl-35072627

ABSTRACT

Obesity has repeatedly been linked to reorganization of the gut microbiome, yet to this point obesity therapeutics have been targeted exclusively toward the human host. Here, we show that gut microbe-targeted inhibition of the trimethylamine N-oxide (TMAO) pathway protects mice against the metabolic disturbances associated with diet-induced obesity (DIO) or leptin deficiency (Lepob/ob). Small molecule inhibition of the gut microbial enzyme choline TMA-lyase (CutC) does not reduce food intake but is instead associated with alterations in the gut microbiome, improvement in glucose tolerance, and enhanced energy expenditure. We also show that gut microbial CutC inhibition is associated with reorganization of host circadian control of both phosphatidylcholine and energy metabolism. This study underscores the relationship between microbe and host metabolism and provides evidence that gut microbe-derived trimethylamine (TMA) is a key regulator of the host circadian clock. This work also demonstrates that gut microbe-targeted enzyme inhibitors have potential as anti-obesity therapeutics.


Subject(s)
Choline/analogs & derivatives , Circadian Rhythm/drug effects , Gastrointestinal Microbiome/drug effects , Obesity/metabolism , Animals , Choline/administration & dosage , Choline/metabolism , Diet, High-Fat , Enzyme Inhibitors/pharmacology , Leptin/deficiency , Lyases/drug effects , Male , Methylamines/metabolism , Mice , Mice, Inbred C57BL , Obesity/genetics , Obesity/microbiology
2.
Biomolecules ; 9(6)2019 06 25.
Article in English | MEDLINE | ID: mdl-31242711

ABSTRACT

Alkyl-imidazolium chloride ionic liquids (ILs) have been broadly studied for biochemical and biomedical technologies. They can permeabilize lipid bilayer membranes and have cytotoxic effects, which makes them targets for drug delivery biomaterials. We assessed the lipid-membrane permeabilities of ILs with increasing alkyl chain lengths from ethyl to octyl groups on large unilamellar vesicles using a trapped-fluorophore fluorescence lifetime-based leakage experiment. Only the most hydrophobic IL, with the octyl chain, permeabilizes vesicles, and the concentration required for permeabilization corresponds to its critical micelle concentration. To correlate the model vesicle studies with biological cells, we quantified the IL permeabilities and cytotoxicities on different cell lines including bacterial, yeast, and ovine blood cells. The IL permeabilities on vesicles strongly correlate with permeabilities and minimum inhibitory concentrations on biological cells. Despite exhibiting a broad range of lipid compositions, the ILs appear to have similar effects on the vesicles and cell membranes.


Subject(s)
Anti-Infective Agents/pharmacology , Anti-Infective Agents/toxicity , Imidazoles/pharmacology , Imidazoles/toxicity , Ionic Liquids/pharmacology , Ionic Liquids/toxicity , Animals , Anti-Infective Agents/chemistry , Anti-Infective Agents/metabolism , Bacteria/drug effects , Bacteria/metabolism , Cell Membrane Permeability , Erythrocytes/drug effects , Erythrocytes/metabolism , Hydrophobic and Hydrophilic Interactions , Imidazoles/chemistry , Imidazoles/metabolism , Ionic Liquids/chemistry , Ionic Liquids/metabolism , Saccharomyces cerevisiae/drug effects , Saccharomyces cerevisiae/metabolism , Sheep
SELECTION OF CITATIONS
SEARCH DETAIL
...