Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
1.
Cell Rep Methods ; 3(12): 100664, 2023 Dec 18.
Article in English | MEDLINE | ID: mdl-38113854

ABSTRACT

Flow cytometry (FCM) is a common method for characterizing extracellular particles (EPs), including viruses and extracellular vesicles (EVs). Frameworks such as MIFlowCyt-EV exist to provide reporting guidelines for metadata, controls, and data reporting. However, tools to optimize FCM for EP analysis in a systematic and quantitative way are lacking. Here, we demonstrate a cohesive set of methods and software tools that optimize FCM settings and facilitate cross-platform comparisons for EP studies. We introduce an automated small-particle optimization (SPOT) pipeline to optimize FCM fluorescence and light scatter detector settings for EP analysis and leverage quantitative FCM (qFCM) as a tool to further enable FCM optimization of fluorophore panel selection, laser power, pulse statistics, and window extensions. Finally, we demonstrate the value of qFCM to facilitate standardized cross-platform comparisons, irrespective of instrument configuration, settings, and sensitivity, in a cross-platform standardization study utilizing a commercially available EV reference material.


Subject(s)
Extracellular Vesicles , Flow Cytometry , Fluorescent Dyes , Software , Light
2.
Nano Lett ; 23(20): 9195-9202, 2023 10 25.
Article in English | MEDLINE | ID: mdl-37788377

ABSTRACT

The analysis of small particles, including extracellular vesicles and viruses, is contingent on their ability to scatter sufficient light to be detected. These detection methods include flow cytometry, nanoparticle tracking analysis, and single particle reflective image sensing. To standardize measurements and enable orthogonal comparisons between platforms, a quantifiable limit of detection is required. The main parameters that dictate the amount of light scattered by particles include size, morphology, and refractive index. To date, there has been a lack of accessible techniques for measuring the refractive index of nanoparticles at a single-particle level. Here, we demonstrate two methods of deriving a small particle refractive index using orthogonal measurements with commercially available platforms. These methods can be applied at either a single-particle or population level, enabling the integration of diameter and scattering cross section values to derive the refractive index using Mie theory.


Subject(s)
Extracellular Vesicles , Nanoparticles , Humans , Refractometry , Flow Cytometry/methods
3.
Front Immunol ; 14: 1235791, 2023.
Article in English | MEDLINE | ID: mdl-37622115

ABSTRACT

Background and objectives: Extracellular vesicles and particles (EVPs) are released from virtually all cell types, and may package many inflammatory factors and, in the case of infection, viral components. As such, EVPs can play not only a direct role in the development and progression of disease but can also be used as biomarkers. Here, we characterized immune signatures of EVPs from the cerebrospinal fluid (CSF) of individuals with HTLV-1-associated myelopathy (HAM), other chronic neurologic diseases, and healthy volunteers (HVs) to determine potential indicators of viral involvement and mechanisms of disease. Methods: We analyzed the EVPs from the CSF of HVs, individuals with HAM, HTLV-1-infected asymptomatic carriers (ACs), and from patients with a variety of chronic neurologic diseases of both known viral and non-viral etiologies to investigate the surface repertoires of CSF EVPs during disease. Results: Significant increases in CD8+ and CD2+ EVPs were found in HAM patient CSF samples compared to other clinical groups (p = 0.0002 and p = 0.0003 compared to HVs, respectively, and p = 0.001 and p = 0.0228 compared to MS, respectively), consistent with the immunopathologically-mediated disease associated with CD8+ T-cells in the central nervous system (CNS) of HAM patients. Furthermore, CD8+ (p < 0.0001), CD2+ (p < 0.0001), CD44+ (p = 0.0176), and CD40+ (p = 0.0413) EVP signals were significantly increased in the CSF from individuals with viral infections compared to those without. Discussion: These data suggest that CD8+ and CD2+ CSF EVPs may be important as: 1) potential biomarkers and indicators of disease pathways for viral-mediated neurological diseases, particularly HAM, and 2) as possible meditators of the disease process in infected individuals.


Subject(s)
Extracellular Vesicles , Nervous System Diseases , Paraparesis, Tropical Spastic , Humans , Central Nervous System , CD40 Antigens , Chronic Disease
4.
Bioinformatics ; 39(6)2023 06 01.
Article in English | MEDLINE | ID: mdl-37285317

ABSTRACT

MOTIVATION: Extracellular particles (EPs) are the focus of a rapidly growing area of exploration due to the widespread interest in understanding their roles in health and disease. However, despite the general need for EP data sharing and established community standards for data reporting, no standard repository for EP flow cytometry data captures rigor and minimum reporting standards such as those defined by MIFlowCyt-EV (https://doi.org/10.1080/20013078.2020.1713526). We sought to address this unmet need by developing the NanoFlow Repository. RESULTS: We have developed The NanoFlow Repository to provide the first implementation of the MIFlowCyt-EV framework. AVAILABILITY AND IMPLEMENTATION: The NanoFlow Repository is freely available and accessible online at https://genboree.org/nano-ui/. Public datasets can be explored and downloaded at https://genboree.org/nano-ui/ld/datasets. The NanoFlow Repository's backend is built using the Genboree software stack that powers the ClinGen Resource, specifically the Linked Data Hub (LDH), a REST API framework written in Node.js, developed initially to aggregate data within ClinGen (https://ldh.clinicalgenome.org/ldh/ui/about). NanoFlow's LDH (NanoAPI) is available at https://genboree.org/nano-api/srvc. NanoAPI is supported by a Node.js Genboree authentication and authorization service (GbAuth), a graph database called ArangoDB, and an Apache Pulsar message queue (NanoMQ) to manage data inflows into NanoAPI. The website for NanoFlow Repository is built with Vue.js and Node.js (NanoUI) and supports all major browsers.


Subject(s)
Software , Databases, Factual , Flow Cytometry
5.
Cell Rep Methods ; 2(1): 100136, 2022 01 24.
Article in English | MEDLINE | ID: mdl-35474866

ABSTRACT

Extracellular vesicles (EVs) of various types are released or shed from all cells. EVs carry proteins and contain additional protein and nucleic acid cargo that relates to their biogenesis and cell of origin. EV cargo in liquid biopsies is of widespread interest owing to its ability to provide a retrospective snapshot of cell state at the time of EV release. For the purposes of EV cargo analysis and repertoire profiling, multiplex assays are an essential tool in multiparametric analyte studies but are still being developed for high-parameter EV protein detection. Although bead-based EV multiplex analyses offer EV profiling capabilities with conventional flow cytometers, the utilization of EV multiplex assays has been limited by the lack of software analysis tools for such assays. To facilitate robust EV repertoire studies, we developed multiplex analysis post-acquisition analysis (MPAPASS) open-source software for stitched multiplex analysis, EV database-compatible reporting, and visualization of EV repertoires.


Subject(s)
Extracellular Vesicles , Retrospective Studies , Extracellular Vesicles/metabolism , Flow Cytometry/methods , Software
6.
Radiat Res ; 192(2): 219-230, 2019 08.
Article in English | MEDLINE | ID: mdl-31246533

ABSTRACT

Primary amines form a key component of a well-studied mechanism for capturing carbon dioxide (CO2) from the atmosphere. This study comprises a single-step synthesis of a novel sorbent for CO2 by grafting monomers rich in primary amines to three commercial-grade fabrics: polyethylene terephthalate, high-density polyethylene and nylon 6. An initial evaluation of the sorbency of the chosen monomers, allylamine and butenylamine, qualitatively confirmed their ability to extract CO2 from the atmosphere. Six novel copolymers, comprised of each of the three fabrics grafted with one of each monomer, were synthesized using radiation-induced graft copolymerization through electron beam irradiation. All fabrics achieved greater grafting with butenylamine compared to allylamine, likely given the closer proximity of the primary amine to the radical on the latter's structure. Primary amines can stabilize radicals, preventing copolymerization reactions. Characterization of sorbency revealed that the majority of the grafted amines likely reacted to adsorb CO2. Therefore, the amount of amine grafted comprises the primary limiting factor on the sorbents' CO2 capacity.


Subject(s)
Atmosphere/chemistry , Carbon Dioxide/chemistry , Polymerization , Textiles , Adsorption , Amines/chemistry , Chemistry Techniques, Synthetic , Radiochemistry
7.
Bioorg Med Chem Lett ; 28(8): 1392-1396, 2018 05 01.
Article in English | MEDLINE | ID: mdl-29548573

ABSTRACT

A second-generation small molecule P2X3 receptor antagonist has been developed. The lead optimization strategy to address shortcomings of the first-generation preclinical lead compound is described herein. These studies were directed towards the identification and amelioration of preclinical hepatobiliary findings, reducing potential for drug-drug interactions, and decreasing the projected human dose of the first-generation lead.


Subject(s)
Analgesics/therapeutic use , Benzamides/therapeutic use , Pain/drug therapy , Purinergic P2X Receptor Antagonists/therapeutic use , Pyridines/therapeutic use , Receptors, Purinergic P2X3/metabolism , Analgesics/chemical synthesis , Analgesics/chemistry , Analgesics/pharmacokinetics , Animals , Benzamides/chemical synthesis , Benzamides/chemistry , Benzamides/pharmacokinetics , Dogs , Drug Design , Drug Interactions , Glucuronosyltransferase/antagonists & inhibitors , Half-Life , Hyperbilirubinemia/prevention & control , Molecular Structure , Purinergic P2X Receptor Antagonists/chemical synthesis , Purinergic P2X Receptor Antagonists/chemistry , Purinergic P2X Receptor Antagonists/pharmacokinetics , Pyridines/chemical synthesis , Pyridines/chemistry , Pyridines/pharmacokinetics , Rats , Stereoisomerism , Structure-Activity Relationship
8.
J Investig Med High Impact Case Rep ; 5(1): 2324709616689376, 2017.
Article in English | MEDLINE | ID: mdl-28203577

ABSTRACT

Drug-induced neurotoxicity is a rare adverse reaction associated with ertapenem. Encephalopathy is a type of neurotoxicity that is defined as a diffuse disease of the brain that alters brain function or structure. We report a patient with normal renal function who developed ertapenem-induced encephalopathy manifesting as altered mental status, hallucinations, and dystonic symptoms. The patient's symptoms improved dramatically following ertapenem discontinuation, consistent with case reports describing ertapenem neurotoxicity in renal dysfunction. Since clinical evidence strongly suggested ertapenem causality, we utilized the Naranjo Scale to estimate the probability of an adverse drug reaction to ertapenem. Our patient received a Naranjo Scale score of 7, suggesting a probable adverse drug reaction, with a reasonable temporal sequence to support our conclusion.

9.
J Biomol Screen ; 21(5): 480-9, 2016 Jun.
Article in English | MEDLINE | ID: mdl-26861708

ABSTRACT

The NaV1.7 voltage-gated sodium channel is a highly valued target for the treatment of neuropathic pain due to its expression in pain-sensing neurons and human genetic mutations in the gene encoding NaV1.7, resulting in either loss-of-function (e.g., congenital analgesia) or gain-of-function (e.g., paroxysmal extreme pain disorder) pain phenotypes. We exploited existing technologies in a novel manner to identify selective antagonists of NaV1.7. A full-deck high-throughput screen was developed for both NaV1.7 and cardiac NaV1.5 channels using a cell-based membrane potential dye FLIPR assay. In assay development, known local anesthetic site inhibitors produced a decrease in maximal response; however, a subset of compounds exhibited a concentration-dependent delay in the onset of the response with little change in the peak of the response at any concentration. Therefore, two methods of analysis were employed for the screen: one to measure peak response and another to measure area under the curve, which would capture the delay-to-onset phenotype. Although a number of compounds were identified by a selective reduction in peak response in NaV1.7 relative to 1.5, the AUC measurement and a subsequent refinement of this measurement were able to differentiate compounds with NaV1.7 pharmacological selectivity over NaV1.5 as confirmed in electrophysiology.


Subject(s)
High-Throughput Screening Assays/methods , NAV1.5 Voltage-Gated Sodium Channel/metabolism , NAV1.7 Voltage-Gated Sodium Channel/metabolism , Neuralgia/drug therapy , Humans , Kinetics , Membrane Potentials/drug effects , Molecular Targeted Therapy , NAV1.5 Voltage-Gated Sodium Channel/drug effects , NAV1.7 Voltage-Gated Sodium Channel/drug effects , Neurons/drug effects , Neurons/pathology , Pain/drug therapy , Rectum/abnormalities
10.
Int J STD AIDS ; 27(1): 25-32, 2016 Jan.
Article in English | MEDLINE | ID: mdl-25691444

ABSTRACT

The life span of persons with HIV has been greatly extended over the past 30 years due to novel therapies. In the developed world and urban settings, this results in a lifespan rivaling the lifespan of a person without HIV. A retrospective study was conducted on 459 patients of an urban, academic medical center who died between 2005 and 2013 in a medium-sized US city. Using the established Cause of Death Project (CoDe) protocol, we measured multiple factors including comorbidities, risk behaviours, contributing and underlying causes of death. This study is one of the few US-based studies using this validated protocol. Among the deaths, 25.9% were sudden and 15.2% were unexpected. Almost one-fifth were related to AIDS-related infections; 47.5% related to non-AIDS causes; with the remainder unknown. Statistically significant increases in CD4 counts and decreasing viral loads were observed over the study period. There were no statistically significant differences observed by HIV risk behaviour, race, gender, age at death, or on antiretrovirals at death. In support of the existing literature, improved HIV management appears to reduce the AIDS-related attributable death among patients observed in this study.


Subject(s)
Cause of Death , HIV Infections/mortality , AIDS-Related Opportunistic Infections/epidemiology , Academic Medical Centers , Adult , Anti-HIV Agents/therapeutic use , Antiretroviral Therapy, Highly Active , CD4 Lymphocyte Count , Comorbidity , Female , HIV Infections/drug therapy , Humans , Male , Medical Records , Middle Aged , Population Surveillance , Retrospective Studies , Risk Factors , Risk-Taking , Sex Factors , Socioeconomic Factors , South Carolina/epidemiology , Substance Abuse, Intravenous , Survival Analysis , Urban Population
11.
J Neurogenet ; 25(4): 134-9, 2011 Dec.
Article in English | MEDLINE | ID: mdl-22074404

ABSTRACT

Voltage-gated sodium channels (VGSC) contribute to the initiation and propagation of action potentials within the nervous system. These channels are important targets for inhibition by several classes of drugs, including antiarrhythmics and local anesthetics. Structural and pharmacological studies have localized the binding of these drugs to a common site near the channel's intracellular pore region. Point mutations within this region disrupt local anesthetic inhibition of cardiac, CNS, and skeletal muscle VGSC subtypes. This study was designed to test whether a similar structural requirement for drug binding exists on the peripheral neuronal VGSC subtype; Na(v)1.7. In support of this hypothesis, an alanine substitution for phenylalanine at position 1737 (F1737A) in the pore lining S6 segment of domain IV in human Na(v)1.7 reduced both use- and state- dependent inhibition of the local anesthetics, lidocaine and tetracaine, by 8-21-fold. We also saw a 2-3-fold reduction in tonic inhibition with the F1737A mutant. The voltage dependence of both activation and inactivation were unaffected by the F1737A mutation, however, fast inactivation kinetics were impaired, such that a significant portion of inward current remained at the end of a 20-ms depolarization. These data suggest that F1737 forms a part of the high affinity binding of local anesthetics as well as mediating inactivation processes of neuronal Na(v)1.7 channels.


Subject(s)
Anesthetics, Local/pharmacology , Drug Resistance/genetics , Nociceptors/drug effects , Point Mutation/genetics , Sodium Channel Blockers/pharmacology , Sodium Channels/genetics , Amino Acid Substitution/genetics , Binding Sites/drug effects , Binding Sites/genetics , Binding, Competitive/genetics , HEK293 Cells , Humans , Ion Channel Gating/drug effects , Ion Channel Gating/genetics , NAV1.7 Voltage-Gated Sodium Channel , Neural Inhibition/drug effects , Neural Inhibition/genetics , Nociceptors/physiology , Sodium Channels/physiology
12.
Bioorg Med Chem Lett ; 21(14): 4255-8, 2011 Jul 15.
Article in English | MEDLINE | ID: mdl-21669528

ABSTRACT

A series of benzothiophene methyl amines were examined in an effort to identify non-amidine chemotypes with reduced polypharmacology from existing leads with the goal of finding potent ASIC3 channel blockers to advance the therapeutic evaluation of ASIC3 inhibition.


Subject(s)
Nerve Tissue Proteins/antagonists & inhibitors , Sodium Channel Blockers/chemistry , Acid Sensing Ion Channels , Amidines/chemistry , Amiloride/chemistry , Animals , Nerve Tissue Proteins/metabolism , Rats , Sodium Channel Blockers/pharmacology , Sodium Channels/metabolism , Structure-Activity Relationship
13.
Bioorg Med Chem Lett ; 21(9): 2646-9, 2011 May 01.
Article in English | MEDLINE | ID: mdl-21257308

ABSTRACT

The Merck Fragment Library was screened versus acid-sensing ion channel 3 (ASIC3), a novel target for the treatment of pain. Fragment hits were optimized using two strategies, and potency was improved from 0.7 mM to 3 µM with retention of good ligand efficiency and incorporation of reasonable physical properties, off-target profile, and rat pharmacokinetics.


Subject(s)
Drug Discovery , Electrophysiological Phenomena , Nerve Tissue Proteins/antagonists & inhibitors , Acid Sensing Ion Channels , Animals , Molecular Structure , Peptide Fragments , Rats , Small Molecule Libraries , Sodium Channels
14.
Br J Pharmacol ; 161(4): 950-60, 2010 Oct.
Article in English | MEDLINE | ID: mdl-20860671

ABSTRACT

BACKGROUND AND PURPOSE: Inflammatory pain is triggered by activation of pathways leading to the release of mediators such as bradykinin, prostaglandins, interleukins, ATP, growth factors and protons that sensitize peripheral nociceptors. The activation of acid-sensitive ion channels (ASICs) may have particular relevance in the development and maintenance of inflammatory pain. ASIC3 is of particular interest due to its restricted tissue distribution in the nociceptive primary afferent fibres and its high sensitivity to protons. EXPERIMENTAL APPROACH: To examine the contribution of ASIC3 to the development and maintenance of muscle pain and inflammatory pain, we studied the in vivo efficacy of a selective ASIC3 inhibitor, APETx2, in rats. KEY RESULTS: Administration of APETx2 into the gastrocnemius muscle prior to the administration of low pH saline prevented the development of mechanical hypersensitivity, whereas APETx2 administration following low-pH saline was ineffective in reversing hypersensitivity. The prevention of mechanical hypersensitivity produced by acid administration was observed whether APETx2 was applied via i.m. or i.t. routes. In the complete Freund's adjuvant (CFA) inflammatory pain model, local administration of APETx2 resulted in a potent and complete reversal of established mechanical hypersensitivity, whereas i.t. application of APETx2 was ineffective. CONCLUSIONS AND IMPLICATIONS: ASIC3 contributed to the development of mechanical hypersensitivity in the acid-induced muscle pain model, whereas ASIC3 contributed to the maintenance of mechanical hypersensitivity in the CFA inflammatory pain model. The contribution of ASIC3 to established hypersensitivity associated with inflammation suggests that this channel may be an effective analgesic target for inflammatory pain states.


Subject(s)
Cnidarian Venoms/pharmacology , Inflammation/physiopathology , Nerve Tissue Proteins/metabolism , Pain/physiopathology , Sodium Channels/metabolism , Acid Sensing Ion Channels , Analgesics/administration & dosage , Analgesics/pharmacology , Animals , CHO Cells , Cnidarian Venoms/administration & dosage , Cricetinae , Cricetulus , Disease Models, Animal , Freund's Adjuvant/toxicity , Hydrogen-Ion Concentration , Inflammation/drug therapy , Male , Muscle, Skeletal/drug effects , Muscle, Skeletal/pathology , Nerve Tissue Proteins/antagonists & inhibitors , Pain/drug therapy , Rats , Rats, Sprague-Dawley , Sodium Chloride/toxicity
15.
Sci Total Environ ; 408(8): 1812-7, 2010 Mar 15.
Article in English | MEDLINE | ID: mdl-20167353

ABSTRACT

In this study, we used a systematic approach to study and compare the in vitro cytotoxicity of selected engineered carbon nanotubes (CNTs) to test cell lines including human skin keratinocytes, lung cells and lymphocytes. Results of fluorescein diacetate (FDA) uptake in T4 lymphocyte A3 cells indicated cytotoxicity caused by single-walled carbon nanotubes (SWCNTs) at concentrations of 2, 5 and 10ppm. At 2ppm, the SWCNT treatment group retained 71.3% viability compared to the PBS control group. At 10ppm, cellular viability further decreased to 56.5% of the PBS control group. In the skin keratinocyte HaCaT cells and lung MSTO-211H cells, the SWCNT did not demonstrate any cytotoxicity at concentrations of 2 and 5ppm but slightly inhibited HaCaT cells and caused significant toxicity to MSTO-211H cells at 10ppm. Multi-walled carbon nanotube (MWCNT) testing showed significant cytotoxicity to A3 cells in a dose-dependent manner. At 10ppm the viability of the cells decreased to 89.1% compared to the PBS control. In MSTO-211H cells, MWCNT caused significant toxicity at concentrations of 2ppm and higher. By comparison, HaCaT cells were inhibited significantly only at 10ppm. Overall, the test CNTs inhibited cellular viabilities in a concentration, cell type, and CNT type-dependent pattern. The viabilities of the MWCNT-impacted cells are higher than the corresponding SWCNT groups. We speculate that on a per volume basis, the greater availability of defects and contaminants for cellular interaction may contribute to the higher cytotoxicity of SWCNT in this study. The interaction between the SWCNTs and A3 lymphocytes was also observed by scanning electron microscopy. The mechanism for causing cell death in this study was attributed to apoptosis and necrosis after physical penetration by CNTs and oxidative stress via formation of reactive oxygen species.


Subject(s)
Keratinocytes/drug effects , Lung/cytology , Lung/drug effects , Lymphocytes/drug effects , Nanotubes, Carbon/toxicity , Oxidative Stress/drug effects , Cell Death/drug effects , Cell Death/physiology , Cell Line , Cell Survival/drug effects , Cell Survival/physiology , Humans , Keratinocytes/cytology , Keratinocytes/metabolism , Lung/metabolism , Lymphocytes/cytology , Lymphocytes/metabolism , Microscopy, Electron, Scanning , Oxidative Stress/physiology , Reactive Oxygen Species/metabolism
16.
J Hazard Mater ; 176(1-3): 367-73, 2010 Apr 15.
Article in English | MEDLINE | ID: mdl-19962827

ABSTRACT

Assessment of C(60) nanotoxicity requires a variety of strategies for dispersing it into biological systems. Our objective was to determine organic solvent/surfactant combinations suitable for this purpose. We used Escherichia coli (ATCC# 25254) to determine the cytotoxicity of C(60) in solvents at concentrations up to 100 ppm. In this preliminary study we hypothesized that C(60) toxicity is directly correlated with its degree of dispersion in solution and that more solubilizing solvents induce higher toxicity. Test solvent concentration (1%) and Tween 80 (0.04%) were based on E. coli viability assay. Sonication was used to further enhance C(60) dispersal. The end-point response was measured with viability (in terms of LC(50)) and general metabolic activity (in terms of IC(50)) of E. coli cultures after exposure. The ultimate goal was to select safe dispersing media and enrich the database of C(60) nanotoxicity for NanoQuantitative-Structure-Activity-Relationship (NanoQSAR) applications. LC(50) range was 30 ppm to >400 ppm. IC(50) followed the trend. Among the six solvent combinations, DMSO combined with Tween 80 was the optimum combination for defining a dose-response relationship for assessing its toxicity to E. coli. However, N,N-dimethylformamide has the greatest potential to be a safe solvent for C(60) applications based upon its biocompatibility. Solvent solubility alone could not account for the cytotoxicity observed in this study.


Subject(s)
Fullerenes/toxicity , Solvents/chemistry , Surface-Active Agents/chemistry , Dimethylformamide , Escherichia coli/drug effects , Formamides , Inhibitory Concentration 50 , Polysorbates , Quantitative Structure-Activity Relationship , Solubility , Toxicity Tests
17.
ACS Chem Neurosci ; 1(1): 19-24, 2010 Jan 20.
Article in English | MEDLINE | ID: mdl-22778804

ABSTRACT

The synthesis, structure-activity relationship (SAR), and pharmacological evaluation of analogs of the acid-sensing ion channel (ASIC) inhibitor A-317567 are reported. It was found that the compound with an acetylenic linkage was the most potent ASIC-3 channel blocker. This compound reversed mechanical hypersensitivity in the rat iodoacetate model of osteoarthritis pain, although sedation was noted. Sedation was also observed in ASIC-3 knockout mice, questioning whether sedation and antinociception are mediated via a non-ASIC-3 specific mechanism.


Subject(s)
Acid Sensing Ion Channel Blockers/chemical synthesis , Acid Sensing Ion Channel Blockers/pharmacology , Acid Sensing Ion Channels/drug effects , Analgesics/chemical synthesis , Analgesics/pharmacology , Isoquinolines/chemical synthesis , Isoquinolines/pharmacology , Naphthalenes/chemical synthesis , Naphthalenes/pharmacology , Acid Sensing Ion Channels/biosynthesis , Animals , Behavior, Animal/drug effects , Electrophysiological Phenomena , Freund's Adjuvant , Iodoacetates , Male , Mice , Neurons/drug effects , Neurons/metabolism , Osteoarthritis/chemically induced , Osteoarthritis/drug therapy , Pain/chemically induced , Pain/drug therapy , Pain Measurement/drug effects , Physical Stimulation , Postural Balance/drug effects , Rats , Rats, Sprague-Dawley , Structure-Activity Relationship
20.
Sci Total Environ ; 407(8): 3070-2, 2009 Apr 01.
Article in English | MEDLINE | ID: mdl-19215968

ABSTRACT

The recent advances in nanotechnology and the corresponding popular usage of nanomaterials have resulted in uncertainties regarding their environmental impacts. In this study, we used a systematic approach to study and compare the in vitro cytotoxicity of selected engineered metal oxide nanoparticles to the test organisms--E. coli. Among the seven test nano-sized metal oxides, ZnO, CuO, Al2O3, La2O3, Fe2O3, SnO2 and TiO2, ZnO showed the lowest LD(50) of 21.1 mg/L and TiO2 had the highest LD(50) of 1104.8 mg/L. Data of 14C-glucose mineralization test paralleled the results of bacteria viability test. After regression calculation, the cytotoxicity was found to be correlated with cation charges (R(2) = 0.9785). The higher the cation charge is, the lower the cytotoxicity of the nano-sized metal oxide becomes. To the best of our knowledge, this finding is the first report in nanotoxicology.


Subject(s)
Escherichia coli/drug effects , Metal Nanoparticles/toxicity , Oxides/toxicity , Lethal Dose 50 , Metal Nanoparticles/chemistry , Oxides/chemistry , Particle Size
SELECTION OF CITATIONS
SEARCH DETAIL
...