Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Immunol ; 206(12): 2875-2887, 2021 06 15.
Article in English | MEDLINE | ID: mdl-34049970

ABSTRACT

The quality of T cell responses depends on the lymphocytes' ability to undergo clonal expansion, acquire effector functions, and traffic to the site of infection. Although TCR signal strength is thought to dominantly shape the T cell response, by using TCR transgenic CD4+ T cells with different peptide:MHC binding affinity, we reveal that TCR affinity does not control Th1 effector function acquisition or the functional output of individual effectors following mycobacterial infection in mice. Rather, TCR affinity calibrates the rate of cell division to synchronize the distinct processes of T cell proliferation, differentiation, and trafficking. By timing cell division-dependent IL-12R expression, TCR affinity controls when T cells become receptive to Th1-imprinting IL-12 signals, determining the emergence and magnitude of the Th1 effector pool. These findings reveal a distinct yet cooperative role for IL-12 and TCR binding affinity in Th1 differentiation and suggest that the temporal activation of clones with different TCR affinity is a major strategy to coordinate immune surveillance against persistent pathogens.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , Mycobacterium bovis/immunology , Receptors, Antigen, T-Cell/immunology , Animals , Cells, Cultured , Mice , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic
2.
J Invest Dermatol ; 141(9): 2238-2249.e12, 2021 09.
Article in English | MEDLINE | ID: mdl-33781756

ABSTRACT

Dysregulation of epigenetic modifiers is a frequent event in melanoma and underlies many aspects of melanoma biology, including resistance to targeted therapy and immunotherapies. Here, we report that dual targeting of BET and CDK9 proteins have synergistic effects against melanoma cells in vitro and in vivo. The BET inhibitor (IBET151) and CDK9 inhibitor (CDKI73) synergistically killed melanoma cells in vitro independent of their BRAF or NRAS mutation status. The combination of drugs markedly inhibited the growth of human melanoma C002M cells in vitro in three-dimensional spheroids and in vivo in NOD-SCID gamma mice compared with vehicle control and the individual drugs (P < 0.05). Cell death was associated with mitochondrial depolarization, caspase-dependent apoptosis with cleavage of PARP1, and downregulation of anti-apoptotic proteins BCL2, BCLXL, and MCL1. Gene set enrichment analysis revealed downregulation of hallmark gene sets associated with E2F, G2M checkpoint, and c-MYC. Survival analysis showed worse prognosis with high G2M, E2F, or c-MYC gene signatures, suggesting biomarkers of response of BET and CDK9 inhibitors in melanoma. This combination of epigenetic inhibitors targets multiple downstream genes, leading to cell death of melanoma cells in vitro and in vivo, and warrants further investigation for treatment of melanoma in patients not responding to current therapies.


Subject(s)
Antineoplastic Agents/therapeutic use , Cyclin-Dependent Kinase 9/antagonists & inhibitors , Melanoma/drug therapy , Nerve Tissue Proteins/genetics , Pyrimidines/therapeutic use , Receptors, Cell Surface/genetics , Skin Neoplasms/drug therapy , Sulfonamides/therapeutic use , Animals , Apoptosis , Biomarkers, Pharmacological , Cell Line, Tumor , Drug Synergism , Drug Therapy, Combination , Epigenomics , Humans , Mice , Mice, SCID , Neoplasm Metastasis , Neoplasm Staging , Nerve Tissue Proteins/metabolism , Receptors, Cell Surface/metabolism , Xenograft Model Antitumor Assays
3.
Immunol Cell Biol ; 96(10): 1131-1139, 2018 11.
Article in English | MEDLINE | ID: mdl-29920767

ABSTRACT

Conventional dendritic cells (cDCs) are continuously replenished by bone marrow-derived precursors called pre-DCs, which traffic through the blood to peripheral tissues. Pre-DCs are a heterogeneous population that includes cDC subset-committed progenitors, namely pre-cDC1 and pre-cDC2, which give rise to mature cDC1 and cDC2, respectively. Regulation of pre-DC subset trafficking is thought to aid the host response to immune challenge. However, the molecular cues regulating pre-cDC1 versus pre-cDC2 trafficking toward peripheral sites during homeostasis and disease remain elusive. Here, we report that pre-cDC1 but not pre-cDC2 express the T helper type 1-associated chemokine receptor CXCR3. Moreover, we identify a cell-intrinsic role for CXCR3 in the trafficking of pre-cDC1 to melanoma tumors but not to non-inflamed organs. We also show that tumor cDC1 numbers can be increased pharmacologically by targeting dipeptidyl peptidase-4 (CD26), a negative regulator of CXCR3 ligands. Our findings demonstrate that pre-cDC1 trafficking is regulated distinctly from pre-cDC2, which is relevant for our understanding of the DC lineage in the context of cancer and inflammation.


Subject(s)
Dendritic Cells/immunology , Dendritic Cells/metabolism , Gene Expression Regulation , Receptors, Chemokine/genetics , Animals , Chemotaxis/immunology , Dipeptidyl Peptidase 4/metabolism , Melanoma , Melanoma, Experimental , Mice , Mice, Knockout , Receptors, CXCR3/genetics , Receptors, CXCR3/metabolism , Receptors, Chemokine/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...