Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 627: 1453-1463, 2018 Jun 15.
Article in English | MEDLINE | ID: mdl-30857107

ABSTRACT

Polycyclic aromatic hydrocarbons (PAHs) continue to be common environmental contaminants. The anthropogenic sources of these compounds are broadly classed as petrogenic and pyrogenic, but more importantly specific sources including activities such as coal burning, oil spills, and application of coal tar sealants can be identified based on several types of data analysis. Several studies have focused on PAHs in sediments of lakes, streams, and stormwater ponds in larger urban areas, finding contamination arising from a number of different sources and correlating well to land use in the nearby watershed. We report here a study of PAH concentrations and source identification for river and lakebed sediments in and upstream of three smaller Wisconsin municipalities: Eau Claire (Eau Claire River), Stevens Point (Plover River), and Racine (Root River). PAH concentrations increased with increasing developed land cover and impervious surface. Concentrations within the cities and upstream agricultural or residential areas do not rise to the level found in larger urban areas or stormwater ponds servicing industrial or commercial land use, but can rise to a level that exceeds the Threshold Effects Concentration (TEC). Concentrations in areas with natural landcovers were very low, with the exception of one sample in a wetland with unusually high organic content. Multiple lines of evidence indicate that coal tar-based pavement sealants are a primary source of the contamination in all three cities. PAH concentrations reported here are likely conservative, and these results indicate that even smaller cities using detention ponds as a stormwater management practice should be prepared for costs of contaminated sediment disposal.

2.
Environ Sci Technol ; 51(21): 12190-12199, 2017 Nov 07.
Article in English | MEDLINE | ID: mdl-28980802

ABSTRACT

Molybdenum (Mo) is an essential trace nutrient but has negative health effects at high concentrations. Groundwater typically has low Mo (<2 µg/L), and elevated levels are associated with anthropogenic contamination, although geogenic sources have also been reported. Coal combustion residues (CCRs) are enriched in Mo, and thus present a potential anthropogenic contamination source. Here, we use diagnostic geochemical tracers combined with groundwater residence time indicators to investigate the sources of Mo in drinking-water wells from shallow aquifers in a region of widespread CCR disposal in southeastern Wisconsin. Samples from drinking-water wells were collected in areas near and away from known CCR disposal sites, and analyzed for Mo and inorganic geochemistry indicators, including boron and strontium isotope ratios, along with groundwater tritium-helium and radiogenic 4He in-growth age-dating techniques. Mo concentrations ranged from <1 to 149 µg/L. Concentrations exceeding the U.S. Environmental Protection Agency health advisory of 40 µg/L were found in deeper, older groundwater (mean residence time >300 y). The B (δ11B = 22.9 ± 3.5‰) and Sr (87Sr/86Sr = 0.70923 ± 0.00024) isotope ratios were not consistent with the expected isotope fingerprints of CCRs, but rather mimic the compositions of local lithologies. The isotope signatures combined with mean groundwater residence times of more than 300 years for groundwater with high Mo concentrations support a geogenic source of Mo to the groundwater, rather than CCR-induced contamination. This study demonstrates the utility of a multi-isotope approach to distinguish between fossil fuel-related and natural sources of groundwater contamination.


Subject(s)
Environmental Monitoring , Molybdenum , Groundwater , Strontium Isotopes , United States , Water Pollutants, Chemical , Wisconsin
SELECTION OF CITATIONS
SEARCH DETAIL
...