Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
2.
Front Psychol ; 8: 102, 2017.
Article in English | MEDLINE | ID: mdl-28203215

ABSTRACT

Financial risky decisions and evaluations pervade many human everyday activities. Scientific research in such decision-making typically explores the influence of socio-economic and cognitive factors on financial behavior. However, very little research has explored the holistic influence of contextual, emotional, and hormonal factors on preferences for risk in insurance and investment behaviors. Accordingly, the goal of this review article is to address the complexity of individual risky behavior and its underlying psychological factors, as well as to critically examine current regulations on financial behavior.

3.
Mol Pharmacol ; 84(2): 252-60, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23716621

ABSTRACT

Consumption of ethanol is a considerable risk factor for death in heroin overdose. We sought to determine whether a mildly intoxicating concentration of ethanol could alter morphine tolerance at the cellular level. In rat locus coeruleus (LC) neurons, tolerance to morphine was reversed by acute exposure of the brain slice to ethanol (20 mM). Tolerance to the opioid peptide [d-Ala(2),N-MePhe(4),Gly-ol]-enkephalin was not reversed by ethanol. Previous studies in LC neurons have revealed a role for protein kinase C (PKC)α in µ-opioid receptor (MOPr) desensitization by morphine and in the induction and maintenance of morphine tolerance, but we have been unable to demonstrate that 20 mM ethanol produces significant inhibition of PKCα. The ability of ethanol to reverse cellular tolerance to morphine in LC neurons was absent in the presence of the phosphatase inhibitor okadaic acid, indicating that dephosphorylation is involved. In human embryonic kidney 293 cells expressing the MOPr, ethanol reduced the level of MOPr phosphorylation induced by morphine. Ethanol reversal of tolerance did not appear to result from a direct effect on MOPr since acute exposure to ethanol (20 mM) did not modify the affinity of binding of morphine to the MOPr or the efficacy of morphine for G-protein activation as measured by guanosine 5'-O-(3-[(35)S]thio)triphosphate binding. Similarly, ethanol did not affect MOPr trafficking. We conclude that acute exposure to ethanol enhances the effects of morphine by reversing the processes underlying morphine cellular tolerance.


Subject(s)
Ethanol/pharmacology , Locus Coeruleus/drug effects , Morphine/pharmacology , Neurons/drug effects , Animals , Brain/drug effects , Brain/metabolism , Cell Line , Drug Interactions , Drug Tolerance , Enkephalin, Ala(2)-MePhe(4)-Gly(5)-/pharmacology , GTP-Binding Proteins/metabolism , HEK293 Cells , Humans , Locus Coeruleus/metabolism , Male , Neurons/metabolism , Opioid Peptides/metabolism , Phosphoric Monoester Hydrolases/metabolism , Phosphorylation/drug effects , Protein Kinase C-alpha/antagonists & inhibitors , Protein Kinase C-alpha/metabolism , Rats , Rats, Wistar , Receptors, Opioid, mu/metabolism
4.
Curr Biol ; 22(15): 1361-70, 2012 Aug 07.
Article in English | MEDLINE | ID: mdl-22704991

ABSTRACT

BACKGROUND: Signaling by transmembrane receptors such as G protein-coupled receptors (GPCRs) occurs at the cell surface and throughout the endocytic pathway, and signaling from the cell surface may differ in magnitude and downstream output from intracellular signaling. As a result, the rate at which signaling molecules traverse the endocytic pathway makes a significant contribution to downstream output. Modulation of the core endocytic machinery facilitates differential uptake of individual cargoes. Clathrin-coated pits are a major entry portal where assembled clathrin forms a lattice around invaginating buds that have captured endocytic cargo. Clathrin assembles into triskelia composed of three clathrin heavy chains and associated clathrin light chains (CLCs). Despite the identification of clathrin-coated pits at the cell surface over 30 years ago, the functions of CLCs in endocytosis have been elusive. RESULTS: In this work, we identify a novel role for CLCs in the regulated endocytosis of specific cargoes. Small interfering RNA-mediated knockdown of either CLCa or CLCb inhibits the uptake of GPCRs. Moreover, we demonstrate that phosphorylation of Ser204 in CLCb is required for efficient endocytosis of a subset of GPCRs and identify G protein-coupled receptor kinase 2 (GRK2) as a kinase that can phosphorylate CLCb on Ser204. Overexpression of CLCb(S204A) specifically inhibits the endocytosis of those GPCRs whose endocytosis is GRK2-dependent. CONCLUSIONS: Together, these results indicate that CLCb phosphorylation acts as a discriminator for the endocytosis of specific GPCRs.


Subject(s)
Clathrin Light Chains/metabolism , Clathrin-Coated Vesicles/physiology , Endocytosis , G-Protein-Coupled Receptor Kinase 2/metabolism , Receptors, G-Protein-Coupled/metabolism , Animals , Phosphorylation
5.
Mol Pharmacol ; 82(2): 178-88, 2012 Aug.
Article in English | MEDLINE | ID: mdl-22553358

ABSTRACT

Previously we correlated the efficacy for G protein activation with that for arrestin recruitment for a number of agonists at the µ-opioid receptor (MOPr) stably expressed in HEK293 cells. We suggested that the endomorphins (endomorphin-1 and -2) might be biased toward arrestin recruitment. In the present study, we investigated this phenomenon in more detail for endomorphin-2, using endogenous MOPr in rat brain as well as MOPr stably expressed in HEK293 cells. For MOPr in neurons in brainstem locus ceruleus slices, the peptide agonists [d-Ala(2),N-Me-Phe(4),Gly(5)-ol]-enkephalin (DAMGO) and endomorphin-2 activated inwardly rectifying K(+) current in a concentration-dependent manner. Analysis of these responses with the operational model of pharmacological agonism confirmed that endomorphin-2 had a much lower operational efficacy for G protein-mediated responses than did DAMGO at native MOPr in mature neurons. However, endomorphin-2 induced faster desensitization of the K(+) current than did DAMGO. In addition, in HEK293 cells stably expressing MOPr, the ability of endomorphin-2 to induce phosphorylation of Ser375 in the COOH terminus of the receptor, to induce association of arrestin with the receptor, and to induce cell surface loss of receptors was much more efficient than would be predicted from its efficacy for G protein-mediated signaling. Together, these results indicate that endomorphin-2 is an arrestin-biased agonist at MOPr and the reason for this is likely to be the ability of endomorphin-2 to induce greater phosphorylation of MOPr than would be expected from its ability to activate MOPr and to induce activation of G proteins.


Subject(s)
Analgesics, Opioid/pharmacology , Oligopeptides/physiology , Receptors, Opioid, mu/agonists , Receptors, Opioid, mu/physiology , Analgesics, Opioid/metabolism , Animals , Dose-Response Relationship, Drug , Enkephalin, Ala(2)-MePhe(4)-Gly(5)-/metabolism , Enkephalin, Ala(2)-MePhe(4)-Gly(5)-/pharmacology , HEK293 Cells , Humans , Male , Organ Culture Techniques , Rats , Rats, Wistar
SELECTION OF CITATIONS
SEARCH DETAIL
...