Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 15(1): 5529, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38956039

ABSTRACT

Left unchecked, plant-parasitic nematodes have the potential to devastate crops globally. Highly effective but non-selective nematicides are justifiably being phased-out, leaving farmers with limited options for managing nematode infestation. Here, we report our discovery of a 1,3,4-oxadiazole thioether scaffold called Cyprocide that selectively kills nematodes including diverse species of plant-parasitic nematodes. Cyprocide is bioactivated into a lethal reactive electrophilic metabolite by specific nematode cytochrome P450 enzymes. Cyprocide fails to kill organisms beyond nematodes, suggesting that the targeted lethality of this pro-nematicide derives from P450 substrate selectivity. Our findings demonstrate that Cyprocide is a selective nematicidal scaffold with broad-spectrum activity that holds the potential to help safeguard our global food supply.


Subject(s)
Antinematodal Agents , Cytochrome P-450 Enzyme System , Nematoda , Animals , Cytochrome P-450 Enzyme System/metabolism , Nematoda/drug effects , Antinematodal Agents/pharmacology , Sulfides/pharmacology , Sulfides/chemistry
2.
PLoS Genet ; 19(11): e1011008, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37930961

ABSTRACT

The cuticles of ecdysozoan animals are barriers to material loss and xenobiotic insult. Key to this barrier is lipid content, the establishment of which is poorly understood. Here, we show that the p-glycoprotein PGP-14 functions coincidently with the sphingomyelin synthase SMS-5 to establish a polar lipid barrier within the pharyngeal cuticle of the nematode C. elegans. We show that PGP-14 and SMS-5 are coincidentally expressed in the epithelium that surrounds the anterior pharyngeal cuticle where PGP-14 localizes to the apical membrane. pgp-14 and sms-5 also peak in expression at the time of new cuticle synthesis. Loss of PGP-14 and SMS-5 dramatically reduces pharyngeal cuticle staining by Nile Red, a key marker of polar lipids, and coincidently alters the nematode's response to a wide-range of xenobiotics. We infer that PGP-14 exports polar lipids into the developing pharyngeal cuticle in an SMS-5-dependent manner to safeguard the nematode from environmental insult.


Subject(s)
Caenorhabditis elegans Proteins , Caenorhabditis elegans , Animals , Caenorhabditis elegans/genetics , Caenorhabditis elegans/metabolism , Cell Membrane/metabolism , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans Proteins/metabolism , Lipids , Permeability
3.
Nature ; 618(7963): 102-109, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37225985

ABSTRACT

Parasitic nematodes are a major threat to global food security, particularly as the world amasses 10 billion people amid limited arable land1-4. Most traditional nematicides have been banned owing to poor nematode selectivity, leaving farmers with inadequate means of pest control4-12. Here we use the model nematode Caenorhabditis elegans to identify a family of selective imidazothiazole nematicides, called selectivins, that undergo cytochrome-p450-mediated bioactivation in nematodes. At low parts-per-million concentrations, selectivins perform comparably well with commercial nematicides to control root infection by Meloidogyne incognita, a highly destructive plant-parasitic nematode. Tests against numerous phylogenetically diverse non-target systems demonstrate that selectivins are more nematode-selective than most marketed nematicides. Selectivins are first-in-class bioactivated nematode controls that provide efficacy and nematode selectivity.


Subject(s)
Antinematodal Agents , Tylenchoidea , Animals , Humans , Antinematodal Agents/chemistry , Antinematodal Agents/metabolism , Antinematodal Agents/pharmacology , Caenorhabditis elegans/drug effects , Caenorhabditis elegans/metabolism , Tylenchoidea/drug effects , Tylenchoidea/metabolism , Thiazoles/chemistry , Thiazoles/metabolism , Thiazoles/pharmacology , Cytochrome P-450 Enzyme System/drug effects , Plant Roots/drug effects , Plant Roots/parasitology , Plant Diseases , Species Specificity , Substrate Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...