Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Sci Technol ; 58(24): 10675-10684, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38843196

ABSTRACT

Isoprene has the highest atmospheric emissions of any nonmethane hydrocarbon, and isoprene epoxydiols (IEPOX) are well-established oxidation products and the primary contributors forming isoprene-derived secondary organic aerosol (SOA). Highly acidic particles (pH 0-3) widespread across the lower troposphere enable acid-driven multiphase chemistry of IEPOX, such as epoxide ring-opening reactions forming methyltetrol sulfates through nucleophilic attack of sulfate (SO42-). Herein, we systematically demonstrate an unexpected decrease in SOA formation from IEPOX on highly acidic particles (pH < 1). While IEPOX-SOA formation is commonly assumed to increase at low pH when more [H+] is available to protonate epoxides, we observe maximum SOA formation at pH 1 and less SOA formation at pH 0.0 and 0.4. This is attributed to limited availability of SO42- at pH values below the acid dissociation constant (pKa) of SO42- and bisulfate (HSO4-). The nucleophilicity of HSO4- is 100× lower than SO42-, decreasing SOA formation and shifting particulate products from low-volatility organosulfates to higher-volatility polyols. Current model parameterizations predicting SOA yields for IEPOX-SOA do not properly account for the SO42-/HSO4- equilibrium, leading to overpredictions of SOA formation at low pH. Accounting for this underexplored acidity-dependent behavior is critical for accurately predicting SOA concentrations and resolving SOA impacts on air quality.


Subject(s)
Aerosols , Epoxy Compounds/chemistry , Hydrogen-Ion Concentration , Acid-Base Equilibrium
2.
ACS EST Air ; 1(6): 511-524, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38884193

ABSTRACT

Secondary organic aerosol (SOA) from acid-driven reactive uptake of isoprene epoxydiols (IEPOX) contributes up to 40% of organic aerosol (OA) mass in fine particulate matter. Previous work showed that IEPOX substantially converts particulate inorganic sulfates to surface-active organosulfates (OSs). This decreases aerosol acidity and creates a viscous organic-rich shell that poses as a diffusion barrier, inhibiting additional reactive uptake of IEPOX. To account for this "self-limiting" effect, we developed a phase-separation box model to evaluate parameterizations of IEPOX reactive uptake against time-resolved chamber measurements of IEPOX-SOA tracers, including 2-methyltetrols (2-MT) and methyltetrol sulfates (MTS), at ~ 50% relative humidity. The phase-separation model was most sensitive to the mass accommodation coefficient, IEPOX diffusivity in the organic shell, and ratio of the third-order reaction rate constants forming 2-MT and MTS ( k M T / k M T S ). In particular, k M T / k M T S had to be lower than 0.1 to bring model predictions of 2-MT and MTS in closer agreement with chamber measurements; prior studies reported values larger than 0.71. The model-derived rate constants favor more particulate MTS formation due to 2-MT likely off-gassing at ambient-relevant OA loadings. Incorporating this parametrization into chemical transport models is expected to predict lower IEPOX-SOA mass and volatility due to the predominance of OSs.

3.
Environ Sci Technol ; 56(15): 10596-10607, 2022 08 02.
Article in English | MEDLINE | ID: mdl-35834796

ABSTRACT

Aerosol acidity increases secondary organic aerosol (SOA) formed from the reactive uptake of isoprene-derived epoxydiols (IEPOX) by enhancing condensed-phase reactions within sulfate-containing submicron particles, leading to low-volatility organic products. However, the link between the initial aerosol acidity and the resulting physicochemical properties of IEPOX-derived SOA remains uncertain. Herein, we show distinct differences in the morphology, phase state, and chemical composition of individual organic-inorganic mixed particles after IEPOX uptake to ammonium sulfate particles with different initial atmospherically relevant acidities (pH = 1, 3, and 5). Physicochemical properties were characterized via atomic force microscopy coupled with photothermal infrared spectroscopy (AFM-PTIR) and Raman microspectroscopy. Compared to less acidic particles (pH 3 and 5), reactive uptake of IEPOX to the most acidic particles (pH 1) resulted in 50% more organosulfate formation, clearer phase separation (core-shell), and more irregularly shaped morphologies, suggesting that the organic phase transitioned to semisolid or solid. This study highlights that initial aerosol acidity may govern the subsequent aerosol physicochemical properties, such as viscosity and morphology, following the multiphase chemical reactions of IEPOX. These results can be used in future studies to improve model parameterizations of SOA formation from IEPOX and its properties, toward the goal of bridging predictions and atmospheric observations.


Subject(s)
Atmosphere , Hemiterpenes , Acids/chemistry , Aerosols/chemistry , Atmosphere/chemistry , Butadienes , Hydrogen-Ion Concentration
4.
Anal Chem ; 92(9): 6502-6511, 2020 05 05.
Article in English | MEDLINE | ID: mdl-32227877

ABSTRACT

The acidity of atmospheric aerosols is a critical property that affects the chemistry and composition of the atmosphere. Many key multiphase chemical reactions are pH-dependent, impacting processes like secondary organic aerosol formation, and need to be understood at a single particle level due to differences in particle-to-particle composition that impact both climate and health. However, the analytical challenge of measuring aerosol acidity in individual particles has limited pH measurements for fine (<2.5 µm) and coarse (2.5-10 µm) particles. This has led to a reliance on indirect methods or thermodynamic modeling, which focus on average, not individual, particle pH. Thus, new approaches are needed to probe single particle pH. In this study, a novel method for pH measurement was explored using degradation of a pH-sensitive polymer, poly(ε-caprolactone), to determine the acidity of individual submicron particles. Submicron particles of known pH (0 or 6) were deposited on a polymer film (21-25 nm thick) and allowed to react. Particles were then rinsed off, and the degradation of the polymer was characterized using atomic force microscopy and Raman microspectroscopy. After degradation, holes in the PCL films exposed to pH 0 were observed, and the loss of the carbonyl stretch was monitored at 1723 cm-1. As particle size decreased, polymer degradation increased, indicating an increase in aerosol acidity at smaller particle diameters. This study describes a new approach to determine individual particle acidity and is a step toward addressing a key measurement gap related to our understanding of atmospheric aerosol impacts on climate and health.


Subject(s)
Air Pollutants/analysis , Polymers/chemistry , Aerosols/analysis , Atmosphere/chemistry , Hydrogen-Ion Concentration , Molecular Structure , Particle Size , Surface Properties
5.
Environ Sci Technol ; 54(8): 4769-4780, 2020 04 21.
Article in English | MEDLINE | ID: mdl-32186187

ABSTRACT

Harmful algal blooms (HABs) caused by cyanobacteria in freshwater environments produce toxins (e.g., microcystin) that are harmful to human and animal health. HAB frequency and intensity are increasing with greater nutrient runoff and a warming climate. Lake spray aerosol (LSA) released from freshwater lakes has been identified on lakeshores and after transport inland, including from lakes with HABs, but little is known about the potential for HAB toxins to be incorporated into LSA. In this study, freshwater samples were collected from two lakes in Michigan: Mona Lake during a severe HAB with microcystin concentrations (>200 µg/L) well above the Environmental Protection Agency (EPA) recommended "do not drink" level (1.6 µg/L) and Muskegon Lake without a HAB (<1 µg/L microcystin). Microcystin toxins were identified in freshwater, as well as aerosol particles generated in the laboratory from Mona Lake water by liquid chromatography-tandem mass spectrometry (LC-MS/MS) at atmospheric concentrations up to 50 ± 20 ng/m3. Enrichment of hydrophobic microcystin congeners (e.g., microcystin-LR) was observed in aerosol particles relative to bulk freshwater, while enrichment of hydrophilic microcystin (e.g., microcystin-RR) was lower. As HABs increase in a warming climate, understanding and quantifying the emissions of toxins into the atmosphere is crucial for evaluating the health consequences of HABs.


Subject(s)
Harmful Algal Bloom , Lakes , Aerosols , Animals , Chromatography, Liquid , Humans , Michigan , Microcystins , Tandem Mass Spectrometry
6.
J Am Soc Mass Spectrom ; 29(9): 1940, 2018 09.
Article in English | MEDLINE | ID: mdl-29998360

ABSTRACT

In the article "Fungal Secretome Analysis via PepSAVI-MS: Identification of the Bioactive Peptide KP4 from Ustilago maydis", acknowledgement of financial support was inadvertently omitted. The authors apologize for this oversight.

7.
J Am Soc Mass Spectrom ; 29(5): 859-865, 2018 05.
Article in English | MEDLINE | ID: mdl-29404970

ABSTRACT

Fungal secondary metabolites represent a rich and largely untapped source for bioactive molecules, including peptides with substantial structural diversity and pharmacological potential. As methods proceed to take a deep dive into fungal genomes, complimentary methods to identify bioactive components are required to keep pace with the expanding fungal repertoire. We developed PepSAVI-MS to expedite the search for natural product bioactive peptides and herein demonstrate proof-of-principle applicability of the pipeline for the discovery of bioactive peptides from fungal secretomes via identification of the antifungal killer toxin KP4 from Ustilago maydis P4. This work opens the door to investigating microbial secretomes with a new lens, and could have broad applications across human health, agriculture, and food safety. Graphical Abstract.


Subject(s)
Anti-Infective Agents/chemistry , Peptides/chemistry , Ustilago/chemistry , Viral Proteins/chemistry , Models, Molecular , Peptide Library , Tandem Mass Spectrometry , Ustilago/virology
SELECTION OF CITATIONS
SEARCH DETAIL
...