Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Commun Biol ; 2: 478, 2019.
Article in English | MEDLINE | ID: mdl-31886416

ABSTRACT

Hibernation in sciurid rodents is a dynamic phenotype timed by a circannual clock. When housed in an animal facility, 13-lined ground squirrels exhibit variation in seasonal onset of hibernation, which is not explained by environmental or biological factors. We hypothesized that genetic factors instead drive variation in timing. After increasing genome contiguity, here, we employ a genotype-by-sequencing approach to characterize genetic variation in 153 ground squirrels. Combined with datalogger records (n = 72), we estimate high heritability (61-100%) for hibernation onset. Applying a genome-wide scan with 46,996 variants, we identify 2 loci significantly (p < 7.14 × 10-6), and 12 loci suggestively (p < 2.13 × 10-4), associated with onset. At the most significant locus, whole-genome resequencing reveals a putative causal variant in the promoter of FAM204A. Expression quantitative trait loci (eQTL) analyses further reveal gene associations for 8/14 loci. Our results highlight the power of applying genetic mapping to hibernation and present new insight into genetics driving its onset.


Subject(s)
Genetic Variation , Hibernation/genetics , Sciuridae/physiology , Seasons , Animals , Female , Genetic Loci , Genetics, Population , Genome , Genomics/methods , Geography , Inheritance Patterns , Male , Polymorphism, Single Nucleotide
2.
Cell ; 171(2): 427-439.e21, 2017 Oct 05.
Article in English | MEDLINE | ID: mdl-28985565

ABSTRACT

Parrot feathers contain red, orange, and yellow polyene pigments called psittacofulvins. Budgerigars are parrots that have been extensively bred for plumage traits during the last century, but the underlying genes are unknown. Here we use genome-wide association mapping and gene-expression analysis to map the Mendelian blue locus, which abolishes yellow pigmentation in the budgerigar. We find that the blue trait maps to a single amino acid substitution (R644W) in an uncharacterized polyketide synthase (MuPKS). When we expressed MuPKS heterologously in yeast, yellow pigments accumulated. Mass spectrometry confirmed that these yellow pigments match those found in feathers. The R644W substitution abolished MuPKS activity. Furthermore, gene-expression data from feathers of different bird species suggest that parrots acquired their colors through regulatory changes that drive high expression of MuPKS in feather epithelia. Our data also help formulate biochemical models that may explain natural color variation in parrots. VIDEO ABSTRACT.


Subject(s)
Avian Proteins/genetics , Feathers/physiology , Melopsittacus/genetics , Pigments, Biological/biosynthesis , Polyenes/metabolism , Polyketide Synthases/genetics , Amino Acid Sequence , Animals , Avian Proteins/metabolism , Feathers/anatomy & histology , Feathers/chemistry , Gene Expression , Genome , Genome-Wide Association Study , Melopsittacus/anatomy & histology , Melopsittacus/physiology , Pigmentation , Polyketide Synthases/metabolism , Polymorphism, Single Nucleotide , Regeneration , Sequence Alignment
3.
PLoS Genet ; 12(2): e1005631, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26828719

ABSTRACT

Reduced representation sequencing methods such as genotyping-by-sequencing (GBS) enable low-cost measurement of genetic variation without the need for a reference genome assembly. These methods are widely used in genetic mapping and population genetics studies, especially with non-model organisms. Variant calling error rates, however, are higher in GBS than in standard sequencing, in particular due to restriction site polymorphisms, and few computational tools exist that specifically model and correct these errors. We developed a statistical method to remove errors caused by restriction site polymorphisms, implemented in the software package GBStools. We evaluated it in several simulated data sets, varying in number of samples, mean coverage and population mutation rate, and in two empirical human data sets (N = 8 and N = 63 samples). In our simulations, GBStools improved genotype accuracy more than commonly used filters such as Hardy-Weinberg equilibrium p-values. GBStools is most effective at removing genotype errors in data sets over 100 samples when coverage is 40X or higher, and the improvement is most pronounced in species with high genomic diversity. We also demonstrate the utility of GBS and GBStools for human population genetic inference in Argentine populations and reveal widely varying individual ancestry proportions and an excess of singletons, consistent with recent population growth.


Subject(s)
Alleles , Genotyping Techniques , High-Throughput Nucleotide Sequencing/methods , Software , Statistics as Topic , Genetics, Population , Humans , Polymorphism, Single Nucleotide/genetics
4.
G3 (Bethesda) ; 4(9): 1681-7, 2014 Jul 16.
Article in English | MEDLINE | ID: mdl-25031181

ABSTRACT

Next-generation DNA sequencing (NGS) produces vast amounts of DNA sequence data, but it is not specifically designed to generate data suitable for genetic mapping. Recently developed DNA library preparation methods for NGS have helped solve this problem, however, by combining the use of reduced representation libraries with DNA sample barcoding to generate genome-wide genotype data from a common set of genetic markers across a large number of samples. Here we use such a method, called genotyping-by-sequencing (GBS), to produce a data set for genetic mapping in an F1 population of apples (Malus × domestica) segregating for skin color. We show that GBS produces a relatively large, but extremely sparse, genotype matrix: over 270,000 SNPs were discovered but most SNPs have too much missing data across samples to be useful for genetic mapping. After filtering for genotype quality and missing data, only 6% of the 85 million DNA sequence reads contributed to useful genotype calls. Despite this limitation, using existing software and a set of simple heuristics, we generated a final genotype matrix containing 3967 SNPs from 89 DNA samples from a single lane of Illumina HiSeq and used it to create a saturated genetic linkage map and to identify a known QTL underlying apple skin color. We therefore demonstrate that GBS is a cost-effective method for generating genome-wide SNP data suitable for genetic mapping in a highly diverse and heterozygous agricultural species. We anticipate future improvements to the GBS analysis pipeline presented here that will enhance the utility of next-generation DNA sequence data for the purposes of genetic mapping across diverse species.


Subject(s)
Chromosome Mapping/methods , DNA, Plant/genetics , Malus/genetics , Sequence Analysis, DNA/methods , Color , Fruit , Genetic Linkage , Genome, Plant , Polymorphism, Single Nucleotide , Quantitative Trait Loci
5.
Plant Cell ; 24(2): 536-50, 2012 Feb.
Article in English | MEDLINE | ID: mdl-22327740

ABSTRACT

The lipid-derived hormone jasmonoyl-L-Ile (JA-Ile) initiates large-scale changes in gene expression by stabilizing the interaction of JASMONATE ZIM domain (JAZ) repressors with the F-box protein CORONATINE INSENSITIVE1 (COI1), which results in JAZ degradation by the ubiquitin-proteasome pathway. Recent structural studies show that the JAZ1 degradation signal (degron) includes a short conserved LPIAR motif that seals JA-Ile in its binding pocket at the COI1-JAZ interface. Here, we show that Arabidopsis thaliana JAZ8 lacks this motif and thus is unable to associate strongly with COI1 in the presence of JA-Ile. As a consequence, JAZ8 is stabilized against jasmonate (JA)-mediated degradation and, when ectopically expressed in Arabidopsis, represses JA-regulated growth and defense responses. These findings indicate that sequence variation in a hypervariable region of the degron affects JAZ stability and JA-regulated physiological responses. We also show that JAZ8-mediated repression depends on an LxLxL-type EAR (for ERF-associated amphiphilic repression) motif at the JAZ8 N terminus that binds the corepressor TOPLESS and represses transcriptional activation. JAZ8-mediated repression does not require the ZIM domain, which, in other JAZ proteins, recruits TOPLESS through the EAR motif-containing adaptor protein NINJA. These findings show that EAR repression domains in a subgroup of JAZ proteins repress gene expression through direct recruitment of corepressors to cognate transcription factors.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/genetics , Cyclopentanes/metabolism , Oxylipins/metabolism , Repressor Proteins/metabolism , Amino Acid Sequence , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Gene Expression Regulation, Plant , Molecular Sequence Data , Mutagenesis, Site-Directed , Plants, Genetically Modified/genetics , Plants, Genetically Modified/metabolism , Protein Interaction Domains and Motifs , Repressor Proteins/genetics , Transcription, Genetic
6.
Proc Natl Acad Sci U S A ; 108(22): 9298-303, 2011 May 31.
Article in English | MEDLINE | ID: mdl-21576464

ABSTRACT

The phytohormone jasmonoyl-L-isoleucine (JA-Ile) signals through the COI1-JAZ coreceptor complex to control key aspects of plant growth, development, and immune function. Despite detailed knowledge of the JA-Ile biosynthetic pathway, little is known about the genetic basis of JA-Ile catabolism and inactivation. Here, we report the identification of a wound- and jasmonate-responsive gene from Arabidopsis that encodes a cytochrome P450 (CYP94B3) involved in JA-Ile turnover. Metabolite analysis of wounded leaves showed that loss of CYP94B3 function in cyp94b3 mutants causes hyperaccumulation of JA-Ile and concomitant reduction in 12-hydroxy-JA-Ile (12OH-JA-Ile) content, whereas overexpression of this enzyme results in severe depletion of JA-Ile and corresponding changes in 12OH-JA-Ile levels. In vitro studies showed that heterologously expressed CYP94B3 converts JA-Ile to 12OH-JA-Ile, and that 12OH-JA-Ile is less effective than JA-Ile in promoting the formation of COI1-JAZ receptor complexes. CYP94B3-overexpressing plants displayed phenotypes indicative of JA-Ile deficiency, including defects in male fertility, resistance to jasmonate-induced growth inhibition, and susceptibility to insect attack. Increased accumulation of JA-Ile in wounded cyp94b3 leaves was associated with enhanced expression of jasmonate-responsive genes. These results demonstrate that CYP94B3 exerts negative feedback control on JA-Ile levels and performs a key role in attenuation of jasmonate responses.


Subject(s)
Arabidopsis/metabolism , Cyclopentanes/pharmacology , Cytochrome P-450 Enzyme System/metabolism , Isoleucine/analogs & derivatives , Plant Growth Regulators/metabolism , Animals , Cyclopentanes/metabolism , Fatty Acids/metabolism , Gene Expression Regulation, Enzymologic , Isoleucine/pharmacology , Metabolism , Mixed Function Oxygenases/metabolism , Models, Genetic , Oxylipins/metabolism , Phenotype , Plant Proteins/metabolism , Signal Transduction , Spodoptera
7.
Plant J ; 63(4): 613-22, 2010 Aug.
Article in English | MEDLINE | ID: mdl-20525008

ABSTRACT

Jasmonates (JAs) are fatty acid-derived signaling compounds that control diverse aspects of plant growth, development and immunity. The F-box protein COI1 functions both as a receptor for jasmonoyl-l-isoleucine (JA-Ile) and as the component of an E3-ubiquitin ligase complex (SCF(COI1) ) that targets JAZ transcriptional regulators for degradation. A key feature of JAZ proteins is the C-terminal Jas motif that mediates the JA-Ile-dependent interaction with COI1. Here, we show that most JAZ genes from evolutionarily diverse plants contain a conserved intron that splits the Jas motif into 20 N-terminal and seven C-terminal (X(5) PY) amino acid submotifs. In most members of the Arabidopsis JAZ family, alternative splicing events involving retention of this intron generate proteins that are truncated before the X(5) PY sequence. In vitro pull-down and yeast two-hybrid assays indicate that these splice variants have reduced capacity to form stable complexes with COI1 in the presence of the bioactive stereoisomer of the hormone (3R,7S)-JA-Ile. cDNA overexpression studies showed that some, but not all, truncated splice variants are dominant repressors of JA signaling. We also show that strong constitutive expression of an intron-containing JAZ10 genomic clone is sufficient to repress JA responses. These findings provide evidence for functional differences between JAZ isoforms, and establish a direct link between the alternative splicing of JAZ pre-mRNA and the dominant repression of JA signal output. We propose that production of dominant JAZ repressors by alternative splicing reduces the negative consequences associated with inappropriate or hyperactivation of the JA response pathway.


Subject(s)
Alternative Splicing , Arabidopsis Proteins/genetics , Cyclopentanes/pharmacology , Oxylipins/pharmacology , Amino Acid Motifs/genetics , Amino Acid Sequence , Arabidopsis Proteins/metabolism , Cyclopentanes/chemistry , Introns/genetics , Isoleucine/analogs & derivatives , Isoleucine/chemistry , Isoleucine/pharmacology , Molecular Sequence Data , Molecular Structure , Mutation , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Oxylipins/chemistry , Plant Growth Regulators/pharmacology , Plant Roots/genetics , Plant Roots/metabolism , Plants/genetics , Plants, Genetically Modified , Protein Binding/drug effects , Repressor Proteins/genetics , Repressor Proteins/metabolism , Reverse Transcriptase Polymerase Chain Reaction , Seedlings/genetics , Seedlings/metabolism , Sequence Homology, Amino Acid , Signal Transduction , Stereoisomerism , Two-Hybrid System Techniques
SELECTION OF CITATIONS
SEARCH DETAIL
...