Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
BMC Plant Biol ; 23(1): 636, 2023 Dec 11.
Article in English | MEDLINE | ID: mdl-38072924

ABSTRACT

BACKGROUND: Commercial cultivars of perennial ryegrass infected with selected Epichloë fungal endophytes are highly desirable in certain pastures as the resulting mutualistic association has the capacity to confer agronomic benefits (such as invertebrate pest deterrence) largely due to fungal produced secondary metabolites (e.g., alkaloids). In this study, we investigated T2 segregating populations derived from two independent transformation events expressing diacylglycerol acyltransferase (DGAT) and cysteine oleosin (CO) genes designed to increase foliar lipid and biomass accumulation. These populations were either infected with Epichloë festucae var. lolii strain AR1 or Epichloë sp. LpTG-3 strain AR37 to examine relationships between the introduced trait and the endophytic association. Here we report on experiments designed to investigate if expression of the DGAT + CO trait in foliar tissues of perennial ryegrass could negatively impact the grass-endophyte association and vice versa. Both endophyte and plant characters were measured under controlled environment and field conditions. RESULTS: Expected relative increases in total fatty acids of 17-58% accrued as a result of DGAT + CO expression with no significant difference between the endophyte-infected and non-infected progeny. Hyphal growth in association with DGAT + CO expression appeared normal when compared to control plants in a growth chamber. There was no significant difference in mycelial biomass for both strains AR1 and AR37, however, Epichloë-derived alkaloid concentrations were significantly lower on some occasions in the DGAT + CO plants compared to the corresponding null-segregant progenies, although these remained within the reported range for bioactivity. CONCLUSIONS: These results suggest that the mutualistic association formed between perennial ryegrass and selected Epichloë strains does not influence expression of the host DGAT + CO technology, but that endophyte performance may be reduced under some circumstances. Further investigation will now be required to determine the preferred genetic backgrounds for introgression of the DGAT + CO trait in combination with selected endophyte strains, as grass host genetics is a major determinant to the success of the grass-endophyte association in this species.


Subject(s)
Alkaloids , Epichloe , Lolium , Endophytes/metabolism , Lolium/genetics , Epichloe/genetics , Epichloe/metabolism , Symbiosis , Poaceae/metabolism , Alkaloids/metabolism , Lipids
2.
Front Plant Sci ; 13: 951389, 2022.
Article in English | MEDLINE | ID: mdl-36186081

ABSTRACT

The highly variable cytoplasmic N-terminus of the plant diacylglycerol acyltransferase 1 (DGAT1) has been shown to have roles in oligomerization as well as allostery; however, the biological significance of the variation within this region is not understood. Comparing the coding sequences over the variable N-termini revealed the Poaceae DGAT1s contain relatively high GC compositional gradients as well as numerous direct and inverted repeats in this region. Using a variety of reciprocal chimeric DGAT1s from angiosperms we show that related N-termini had similar effects (positive or negative) on the accumulation of the recombinant protein in Saccharomyces cerevisiae. When expressed in Camelina sativa seeds the recombinant proteins of specific chimeras elevated total lipid content of the seeds as well as increased seed size. In addition, we combine N- and C-terminal as well as internal tags with high pH membrane reformation, protease protection and differential permeabilization. This led us to conclude the C-terminus is in the ER lumen; this contradicts earlier reports of the cytoplasmic location of plant DGAT1 C-termini.

3.
PLoS One ; 17(2): e0263928, 2022.
Article in English | MEDLINE | ID: mdl-35148336

ABSTRACT

Transcriptional regulator PEAPOD (PPD) and its binding partners comprise a complex that is conserved throughout many core eudicot plants with regard to protein domain sequence and the function of controlling organ size and shape. Orthologues of PPD also exist in the basal angiosperm Amborella trichopoda, various gymnosperm species, the lycophyte Selaginella moellendorffii and several monocot genera, although until now it was not known if these are functional sequences. Here we report constitutive expression of orthologues from species representing diverse taxa of plant phylogeny in the Arabidopsis Δppd mutant. PPD orthologues from S. moellendorffii, gymnosperm Picea abies, A. trichopoda, monocot Musa acuminata, and dicot Trifolium repens were able to complement the mutant and return it to the wild-type phenotype, demonstrating the conserved functionality of PPD throughout vascular plants. In addition, analysis of bryophyte genomes revealed potential PPD orthologues in model liverwort and moss species, suggesting a more primitive lineage for this conserved regulator. The Poaceae (grasses) lack the genes for the PPD module and the reason for loss of the complex from this economically significant family is unclear, given that grasses were the last of the flowering plants to evolve. Bioinformatic analyses identified putative PPD orthologues in close relatives of the Poaceae, indicating that the explanation for absence of PPD in the grasses may be more complex than previously considered. Understanding the mechanisms which led to loss of PPD from the grasses will provide insight into evolution of the Poaceae.


Subject(s)
Arabidopsis Proteins/genetics , Arabidopsis/growth & development , DNA-Binding Proteins/genetics , Selaginellaceae/genetics , Transcription Factors/genetics , Arabidopsis/genetics , Evolution, Molecular , Gene Deletion , Gene Expression Regulation, Plant , Molecular Structure , Organ Size , Phylogeny , Plant Proteins/genetics , Plants, Genetically Modified/growth & development
4.
Plant Physiol ; 162(2): 626-39, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23616604

ABSTRACT

Our dependency on reduced carbon for energy has led to a rapid increase in the search for sustainable alternatives and a call to focus on energy densification and increasing biomass yields. In this study, we generated a uniquely stabilized plant structural protein (cysteine [Cys]-oleosin) that encapsulates triacylglycerol (TAG). When coexpressed with diacylglycerol O-acyltransferase (DGAT1) in Arabidopsis (Arabidopsis thaliana), we observed a 24% increase in the carbon dioxide (CO2) assimilation rate per unit of leaf area and a 50% increase in leaf biomass as well as approximately 2-, 3-, and 5-fold increases in the fatty acid content of the mature leaves, senescing leaves, and roots, respectively. We propose that the coexpression led to the formation of enduring lipid droplets that prevented the futile cycle of TAG biosynthesis/lipolysis and instead created a sustained demand for de novo lipid biosynthesis, which in turn elevated CO2 recycling in the chloroplast. Fatty acid profile analysis indicated that the formation of TAG involved acyl cycling in Arabidopsis leaves and roots. We also demonstrate that the combination of Cys-oleosin and DGAT1 resulted in the highest accumulation of fatty acids in the model single-cell eukaryote, Saccharomyces cerevisiae. Our results support the notion that the prevention of lipolysis is vital to enabling TAG accumulation in vegetative tissues and confirm the earlier speculation that elevating fatty acid biosynthesis in the leaf would lead to an increase in CO2 assimilation. The Cys-oleosins have applications in biofuels, animal feed, and human nutrition as well as in providing a tool for investigating fatty acid biosynthesis and catabolism.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/genetics , Plant Leaves/metabolism , Triglycerides/metabolism , Amino Acid Sequence , Arabidopsis/metabolism , Arabidopsis Proteins/chemistry , Arabidopsis Proteins/genetics , Biomass , Carbon Dioxide/metabolism , Cysteine/chemistry , Diacylglycerol O-Acyltransferase/genetics , Diacylglycerol O-Acyltransferase/metabolism , Fatty Acids/metabolism , Lipids/analysis , Molecular Sequence Data , Plant Leaves/genetics , Plant Roots/metabolism , Plants, Genetically Modified , Protein Engineering/methods , Saccharomyces cerevisiae/genetics , Serine Proteases/metabolism
5.
J Biotechnol ; 161(4): 407-13, 2012 Nov 15.
Article in English | MEDLINE | ID: mdl-22922012

ABSTRACT

A variety of single-chain variable fragments (scFv) that had been previously developed to the surface epitopes of infective Trichostrongylus colubriformis L3 pathogenic gut nematodes of sheep were fused to a trimeric version of polyoleosin (three head-to-tail repeats of oleosin) and expressed in planta under the control of an Arabidopsis oleosin promoter. The fusion products were found to accumulate in oil bodies (OBs) at the range of 0.25-0.9% of the total seed protein which is comparable with the main 18 kDa isoform of Arabidopsis seed oleosin. Immunofluorescence microscopy and immuno-binding were used to demonstrate that it is possible to both purify the recombinant protein via enrichment for OBs as well as use the OBs emulsion to deliver functional recombinant scFv. This work presents a novel fusion strategy platform to boost the productivity and simplify the delivery of recombinant single chain antibodies and other like proteins.


Subject(s)
Antibodies, Helminth/immunology , Arabidopsis Proteins/immunology , Arabidopsis/genetics , Seeds/genetics , Single-Chain Antibodies/immunology , Trichostrongylus/immunology , Animals , Antigens, Helminth/immunology , Immunoglobulin A/immunology , Plants, Genetically Modified , Recombinant Fusion Proteins/immunology
6.
Plant Biotechnol J ; 8(8): 912-27, 2010 Oct.
Article in English | MEDLINE | ID: mdl-20444209

ABSTRACT

We have successfully created polyoleosins by joining multiple oleosin units in tandem head-to-tail fusions. Constructs encoding recombinant proteins of 1, 3 and 6 oleosin repeats were purposely expressed both in planta and in Escherichia coli. Recombinant polyoleosins accumulated in the seed oil bodies of transgenic plants and in the inclusion bodies of E. coli. Although polyoleosin was estimated to only accumulate to <2% of the total oil body protein in planta, their presence increased the freezing tolerance of imbibed seeds as well as emulsion stability and structural integrity of purified oil bodies; these increases were greater with increasing oleosin repeat number. Interestingly, the hexameric form of polyoleosin also led to an observable delay in germination which could be overcome with the addition of external sucrose. Prokaryotically produced polyoleosin was purified and used to generate artificial oil bodies and the increase in structural integrity of artificial oil bodies-containing polyoleosin was found to mimic those produced in planta. We describe here the construction of polyoleosins, their purification from E. coli, and properties imparted on seeds as well as native and artificial oil bodies. A putative mechanism to account for these properties is also proposed.


Subject(s)
Inclusion Bodies/metabolism , Plant Oils/metabolism , Plant Proteins/metabolism , Plants, Genetically Modified/metabolism , Arabidopsis/genetics , Arabidopsis/metabolism , Electrophoresis, Polyacrylamide Gel , Escherichia coli/genetics , Escherichia coli/metabolism , Plant Proteins/genetics , Plants, Genetically Modified/genetics , Sesamum/genetics , Sesamum/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...