Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Plant Cell Environ ; 46(12): 3871-3886, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37646324

ABSTRACT

Grafting is widely used in horticulture. Shortly after grafting, callus tissues appear at the graft interface and the vascular tissues of the scion and rootstock connect. The graft interface contains a complex mix of tissues, we hypothesised that each tissue has its own metabolic response to wounding/grafting and accumulates different metabolites at different rates. We made intact and wounded cuttings and grafts of grapevine, and then measured changes in bulk flavonoid, phenolic acid and stilbenoid concentration and used metabolite imaging to study tissue-specific responses. We show that some metabolites rapidly accumulate in specific tissues after grafting, for example, stilbene monomers accumulate in necrotic tissues surrounding mature xylem vessels. Whereas other metabolites, such as complex stilbenes, accumulate in the same tissues at later stages. We also observe that other metabolites accumulate in the newly formed callus tissue and identify genotype-specific responses. In addition, exogenous resveratrol application did not modify grafting success rate, potentially suggesting that the accumulation of resveratrol at the graft interface is not linked to graft union formation. The increasing concentration of complex stilbenes often occurs in response to plant stresses (via unknown mechanisms), and potentially increases antioxidant activity and antifungal capacities.


Subject(s)
Stilbenes , Vitis , Resveratrol/metabolism , Stilbenes/metabolism , Plants/metabolism , Antioxidants/metabolism , Vitis/physiology
2.
Bio Protoc ; 13(2)2023 Jan 20.
Article in English | MEDLINE | ID: mdl-36789163

ABSTRACT

Combining two different plants together through grafting is one of the oldest horticultural techniques. In order to survive, both partners must communicate via the formation of de novo connections between the scion and the rootstock. Despite the importance of grafting, the ultrastructural processes occurring at the graft interface remain elusive due to the difficulty of locating the exact interface at the ultrastructural level. To date, only studies with interfamily grafts showing enough ultrastructural differences were able to reliably localize the grafting interface at the ultrastructural level under electron microscopy. Thanks to the implementation of correlative light electron microscopy (CLEM) approaches where the grafted partners were tagged with fluorescent proteins of different colors, the graft interface was successfully and reliably targeted. Here, we describe a protocol for CLEM for the model plant Arabidopsis thaliana , which unambiguously targets the graft interface at the ultrastructural level. Moreover, this protocol is compatible with immunolocalization and electron tomography acquisition to achieve a three-dimensional view of the ultrastructural events of interest in plant tissues. Graphical abstract.

3.
BMC Plant Biol ; 20(1): 367, 2020 Aug 03.
Article in English | MEDLINE | ID: mdl-32746781

ABSTRACT

BACKGROUND: Grafting is widely used in horticulture and rootstocks are known to modify scion growth and adaptation to soil conditions. However, the role of scion genotype in regulating rootstock development and functioning has remained largely unexplored. In this study, reciprocal grafts of two grapevine genotypes were produced as well as the corresponding homo-graft controls. These plants were subjected to a low phosphate (LP) treatment and transcriptome profiling by RNA sequencing was done on root samples collected 27 h after the onset of the LP treatment. RESULTS: A set of transcripts responsive to the LP treatment in all scion/rootstock combinations was identified. Gene expression patterns associated with genetic variation in response to LP were identified by comparing the response of the two homo-grafts. In addition, the scion was shown to modify root transcriptome responses to LP in a rootstock dependent manner. A weighted gene co-expression network analysis identified modules of correlated genes; the analysis of the association of these modules with the phosphate treatment, and the scion and rootstock genotype identified potential hub genes. CONCLUSIONS: This study provides insights into the response of grafted grapevine to phosphate supply and identifies potential shoot-to-root signals that could vary between different grapevine genotypes.


Subject(s)
Phosphates/metabolism , Plant Roots/metabolism , Vitis/genetics , Gene Expression Regulation, Plant , Gene Regulatory Networks , Genotype , Signal Transduction , Transcriptome , Vitis/metabolism
4.
BMC Plant Biol ; 20(1): 43, 2020 Jan 29.
Article in English | MEDLINE | ID: mdl-31996141

ABSTRACT

BACKGROUND: Grapevine is a crop of major economic importance, yet little is known about the regulation of shoot development in grapevine or other perennial fruits crops. Here we combine genetic and genomic tools to identify candidate genes regulating shoot development in Vitis spp. RESULTS: An F2 population from an interspecific cross between V. vinifera and V. riparia was phenotyped for shoot development traits, and three Quantitative Trait Loci (QTLs) were identified on linkage groups (LGs) 7, 14 and 18. Around 17% of the individuals exhibited a dwarfed phenotype. A transcriptomic study identified four candidate genes that were not expressed in dwarfed individuals and located within the confidence interval of the QTL on LG7. A deletion of 84,482 bp was identified in the genome of dwarfed plants, which included these four not expressed genes. One of these genes was VviCURLY LEAF (VviCLF), an orthologue of CLF, a regulator of shoot development in Arabidopsis thaliana. CONCLUSIONS: The phenotype of the dwarfed grapevine plants was similar to that of clf mutants of A. thaliana and orthologues of the known targets of CLF in A. thaliana were differentially expressed in the dwarfed plants. This suggests that CLF, a major developmental regulator in A. thaliana, also controls shoot development in grapevine.


Subject(s)
Arabidopsis Proteins/genetics , Homeodomain Proteins/genetics , Plant Shoots/growth & development , Vitis , Chimera , Chromosome Mapping , Genes, Plant , Genome, Plant , Phenotype , Quantitative Trait Loci , Transcriptome/genetics , Vitis/genetics
5.
J Exp Bot ; 70(3): 747-755, 2019 02 05.
Article in English | MEDLINE | ID: mdl-30481315

ABSTRACT

Grafting has been utilised for at least the past 7000 years. Historically, grafting has been developed by growers without particular interest beyond the agronomical and ornamental effects, and thus knowledge about grafting has remained largely empirical. Much of the commercial production of fruit, and increasingly vegetables, relies upon grafting with rootstocks to provide resistance to soil-borne pathogens and abiotic stresses as well as to influence scion growth and performance. Although there is considerable agronomic knowledge about the use and selection of rootstocks for many species, we know little of the molecular mechanisms underlying rootstock adaptation to different soil environments and rootstock-conferred modifications of scion phenotypes. Furthermore, the processes involved in the formation of the graft union and graft compatibility are poorly understood despite over a hundred years of scientific study. In this paper, we provide an overview of what is known about grafting and the mechanisms underlying rootstock-scion interactions. We highlight recent studies that have advanced our understanding of graft union formation and outline subjects that require further development.


Subject(s)
Genotype , Plant Breeding , Plant Roots , Plant Roots/genetics
6.
Tree Physiol ; 38(11): 1742-1751, 2018 11 01.
Article in English | MEDLINE | ID: mdl-29982794

ABSTRACT

Crop productivity is limited by phosphorus (P) and this will probably increase in the future. Rootstocks offer a means to increase the sustainability and nutrient efficiency of agriculture. It is known that rootstocks alter petiole P concentrations in grapevine. The objective of this work was to determine which functional processes are involved in genotype-specific differences in scion P content by quantifying P uptake, P remobilization from the reserves in the cutting and P allocation within the plant in three grapevine genotypes. Cuttings of two American rootstocks and one European scion variety were grown in sand and irrigated with a nutrient solution containing either high P (0.6 mM) or low P (0 mM). The high P solution was labelled with 32P throughout the experiment. The grapevine genotypes studied show variation in the inhibition of shoot and root biomass in response to low P supply, and P supply also affected shoot, but not root, P concentrations. Genotype-specific differences in total P content were related to differences in P acquisition and utilization efficiencies (PAE and PUE, respectively). Phosphorus allocation within the plant was not affected by genotype or P supply. The rootstock genotype known to confer high petiole P content in the vineyard was associated with a high PAE under high P, and a high PUE under low P. This suggests that the petiole P concentrations in the vineyard are related to genotype-specific differences in PAE and PUE, and that these traits could be used for rootstock selection programmes in the future.


Subject(s)
Genotype , Phosphorus/metabolism , Vitis/metabolism , Plant Shoots/metabolism , Vitis/genetics
7.
Theor Appl Genet ; 131(4): 903-915, 2018 Apr.
Article in English | MEDLINE | ID: mdl-29305700

ABSTRACT

KEY MESSAGE: QTLs were identified for traits assessed on field-grown grafted grapevines. Root number and section had the largest phenotypic variance explained. Genetic control of root and aerial traits was independent. Breeding new rootstocks for perennial crops remains challenging, mainly because of the number of desirable traits which have to be combined, these traits include good rooting ability and root development. Consequently, the present study analyzes the genetic architecture of root traits in grapevine. A segregating progeny of 138 F1 genotypes issued from an inter-specific cross between Vitis vinifera cv. Cabernet-Sauvignon × V. riparia cv. Gloire de Montpellier, used as rootstock, was phenotyped in grafted plants grown for 2 years in the field. Seven traits, related to aerial and root development, were quantified. Heritability ranged between 0.44 for aerial biomass to 0.7 for root number. Total root number was related to the number of fine roots, while root biomass was related to the number of coarse roots. Significant quantitative trait loci (QTLs) were identified for all the traits studied with some of them explaining approximately 20% of phenotypic variance. Only a single QTL co-localized for root and aerial biomass. Identified QTLs for aerial-to-root biomass ratio suggest that aerial and root traits are controlled independently. Genes known to be involved in auxin signaling pathways and phosphorus nutrition, whose orthologues were previously shown to regulate root development in Arabidopsis, were located in the confidence intervals of several QTLs. This study opens new perspectives for breeding rootstocks with improved root development capacities.


Subject(s)
Plant Components, Aerial/growth & development , Plant Roots/growth & development , Quantitative Trait Loci , Vitis/genetics , Crosses, Genetic , Genotype , Phenotype , Vitis/growth & development
8.
BMC Plant Biol ; 16: 91, 2016 Apr 18.
Article in English | MEDLINE | ID: mdl-27091220

ABSTRACT

BACKGROUND: ABA-mediated processes are involved in plant responses to water deficit, especially the control of stomatal opening. However in grapevine it is not known if these processes participate in the phenotypic variation in drought adaptation existing between genotypes. To elucidate this question, the response to short-term water-deficit was analysed in roots and shoots of nine Vitis genotypes differing in their drought adaptation in the field. The transcript abundance of 12 genes involved in ABA biosynthesis, catabolism, and signalling were monitored, together with physiological and metabolic parameters related to ABA and its role in controlling plant transpiration. RESULTS: Although transpiration and ABA responses were well-conserved among the genotypes, multifactorial analyses separated Vitis vinifera varieties and V. berlandieri x V. rupestris hybrids (all considered drought tolerant) from the other genotypes studied. Generally, V. vinifera varieties, followed by V. berlandieri x V. rupestris hybrids, displayed more pronounced responses to water-deficit in comparison to the other genotypes. However, changes in transcript abundance in roots were more pronounced for Vitis hybrids than V. vinifera genotypes. Changes in the expression of the cornerstone ABA biosynthetic gene VviNCED1, and the ABA transcriptional regulator VviABF1, were associated with the response of V. vinifera genotypes, while changes in VviNCED2 abundance were associated with the response of other Vitis genotypes. In contrast, the ABA RCAR receptors were not identified as key components of the genotypic variability of water-deficit responses. Interestingly, the expression of VviSnRK2.6 (an AtOST1 ortholog) was constitutively lower in roots and leaves of V. vinifera genotypes and higher in roots of V. berlandieri x V. rupestris hybrids. CONCLUSIONS: This study highlights that Vitis genotypes exhibiting different levels of drought adaptation differ in key steps involved in ABA metabolism and signalling; both under well-watered conditions and in response to water-deficit. In addition, it supports that adaptation may be related to various mechanisms related or not to ABA responses.


Subject(s)
Abscisic Acid/metabolism , Droughts , Vitis/genetics , Vitis/metabolism , Water/metabolism , Adaptation, Physiological/genetics , Adaptation, Physiological/physiology , Biological Transport/genetics , Biological Transport/physiology , Gene Expression Regulation, Plant , Genetic Background , Genotype , Plant Leaves/genetics , Plant Leaves/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Plant Roots/genetics , Plant Roots/metabolism , Plant Shoots/genetics , Plant Shoots/metabolism , Plant Stomata/genetics , Plant Stomata/physiology , Plant Transpiration/genetics , Plant Transpiration/physiology , Reverse Transcriptase Polymerase Chain Reaction , Signal Transduction/genetics , Signal Transduction/physiology , Species Specificity , Vitis/classification
9.
Wiley Interdiscip Rev Dev Biol ; 2(6): 809-21, 2013.
Article in English | MEDLINE | ID: mdl-24123939

ABSTRACT

Leaves of flowering plants are produced from the shoot apical meristem at regular intervals and they grow according to a developmental program that is determined by both genetic and environmental factors. Detailed frameworks for multiscale dynamic analyses of leaf growth have been developed in order to identify and interpret phenotypic differences caused by either genetic or environmental variations. They revealed that leaf growth dynamics are non-linearly and nonhomogeneously distributed over the lamina, in the leaf tissues and cells. The analysis of the variability in leaf growth, and its underlying processes, has recently gained momentum with the development of automated phenotyping platforms that use various technologies to record growth at different scales and at high throughput. These modern tools are likely to accelerate the characterization of gene function and the processes that underlie the control of shoot development. Combined with powerful statistical analyses, trends have emerged that may have been overlooked in low throughput analyses. However, in many examples, the increase in throughput allowed by automated platforms has led to a decrease in the spatial and/or temporal resolution of growth analyses. Concrete examples presented here indicate that simplification of the dynamic leaf system, without consideration of its spatial and temporal context, can lead to important misinterpretations of the growth phenotype.


Subject(s)
Arabidopsis/growth & development , Meristem/growth & development , Phenotype , Plant Development , Plant Leaves/growth & development , Plant Shoots/growth & development , Arabidopsis/genetics , Arabidopsis/ultrastructure , Automation, Laboratory , Environment , Flowers/physiology , Genetic Heterogeneity , Genotype , Imaging, Three-Dimensional , Kinetics , Meristem/genetics , Meristem/ultrastructure , Molecular Imaging , Plant Leaves/genetics , Plant Leaves/ultrastructure , Plant Shoots/genetics , Plant Shoots/ultrastructure
10.
Methods Mol Biol ; 655: 89-103, 2010.
Article in English | MEDLINE | ID: mdl-20734256

ABSTRACT

The study of leaf expansion began decades ago and has covered the comparison of a wide range of species, genotypes of a same species and environmental conditions or treatments. This has given rise to a large number of potential protocols for today's leaf development biologists. The final size of the leaf surface of a plant results from the integration of many different processes (which may be quantified by various developmental variables) at different organizational levels, such as, the duration and the rate of leaf production by the plant, the duration and the rate of individual leaf expansion, and also cell production and expansion in the leaf. There is much evidence to suggest that the magnitude of a variable at one organizational scale cannot be inferred to another scale because of different feedbacks from one scale to another. This chapter offers a series of protocols, which are the most commonly used in plant developmental biology, to assess quantitatively leaf expansion both at the scale of the shoot and the individual leaf. The protocols described here are for the comparison of Arabidopsis thaliana genotypes, but can be easily adapted to compare leaf expansion under different environmental conditions and in other dicotyledonous plants.


Subject(s)
Arabidopsis/growth & development , Plant Leaves/growth & development , Arabidopsis/genetics , Phenotype , Plant Leaves/genetics , Plant Shoots/genetics , Plant Shoots/growth & development
11.
Plant Physiol ; 138(2): 1097-105, 2005 Jun.
Article in English | MEDLINE | ID: mdl-15908593

ABSTRACT

Several different cellular processes determine the size of the metabolically available nitrate pool in the cytoplasm. These processes include not only ion fluxes across the plasma membrane and tonoplast but also assimilation by the activity of nitrate reductase (NR). In roots, the maintenance of cytosolic nitrate activity during periods of nitrate starvation and resupply (M. van der Leij, S.J. Smith, A.J. Miller [1998] Planta 205: 64-72; R.-G. Zhen, H.-W. Koyro, R.A. Leigh, A.D. Tomos, A.J. Miller [1991] Planta 185: 356-361) suggests that this pool is regulated. Under nitrate-replete conditions vacuolar nitrate is a membrane-bound store that can release nitrate to the cytoplasm; after depletion of cytosolic nitrate, tonoplast transporters would serve to restore this pool. To study the role of assimilation, specifically the activity of NR in regulating the size of the cytosolic nitrate pool, we have compared wild-type and mutant plants. In leaf mesophyll cells, light-to-dark transitions increase cytosolic nitrate activity (1.5-2.8 mm), and these changes were reversed by dark-to-light transitions. Such changes were not observed in nia1nia2 NR-deficient plants indicating that this change in cytosolic nitrate activity was dependent on the presence of functional NR. Furthermore, in the dark, the steady-state cytosolic nitrate activities were not statistically different between the two types of plant, indicating that NR has little role in determining resting levels of nitrate. Epidermal cells of both wild type and NR mutants had cytosolic nitrate activities that were not significantly different from mesophyll cells in the dark and were unaltered by dark-to-light transitions. We propose that the NR-dependent changes in cytosolic nitrate provide a cellular mechanism for the diurnal changes in vacuolar nitrate storage, and the results are discussed in terms of the possible signaling role of cytosolic nitrate.


Subject(s)
Arabidopsis/enzymology , Cytosol/metabolism , Nitrate Reductases/metabolism , Nitrates/physiology , Plant Leaves/metabolism , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Circadian Rhythm , Enzyme Activation , Light , Membrane Potentials/physiology , Mutation , Nitrate Reductase , Nitrate Reductases/genetics , Nitrates/metabolism , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL
...