Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
Front Plant Sci ; 15: 1370495, 2024.
Article in English | MEDLINE | ID: mdl-38567141

ABSTRACT

Introduction: Wildlife feces can contaminate vegetables when enteric bacteria are released by rain and splashed onto crops. Regulations require growers to identify and not harvest produce that is likely contaminated, but U.S. federal standards do not define dimensions for no-harvest zones. Moreover, mulching, used to retain soil moisture and maximize crop yield may impact rain-mediated bacterial dispersal from feces. Methods: To assess Escherichia coli dissemination from a fecal point source to lettuce grown on various mulches, lettuce cv. 'Magenta' was transplanted into raised beds with plastic, biodegradable plastic, straw, or left uncovered at field sites in Maryland and Georgia. Eleven days post-transplant, 10 g of rabbit manure spiked with ~8 log CFU g-1 E. coli were deposited in each bed. One day following natural or simulated rain events, lettuce was sampled along 1.5 m transects on either side of fecal deposits. Lettuce-associated E. coli was semi-quantified with an MPN assay and dependence on fecal age (stale or fresh), lettuce age (baby leaf or mature head), distance from point source, mulch and post-rain days were statistically evaluated. Results: Distance (p<0.001), fecal age (p<0.001) and mulch (p<0.01) were factors for E. coli transfer from point source to lettuce. The highest and lowest E. coli estimates were measured from lettuce grown on biodegradable plastic and straw, respectively, with a 2-log MPN difference (p<0.001). Mulch and distance were also significant factors in E. coli recovery 3 days post-rain (both p<0.001), where plastic mulches differed from bare ground and straw (p<0.01). For all treatments, fewer E. coli were retrieved from lettuce at 0.3 m, 3 days post-rain compared to 1 day (p<0.001). Fitting the data to a Weibull Model predicated that a 7-log reduction in E. coli from fecal levels would be achieved at 1.2-1.4 m from the point source on plastic mulches, 0.75 m on bare soil (p<0.05) and 0.43 m on straw (p<0.01). Discussion: Straw and bare ground limited rain-mediated E. coli dispersal from feces to lettuce compared to plastic mulches. Fecal age was negatively associated with E. coli dispersal. These findings can inform harvesting recommendations for measures related to animal intrusion in vegetable production areas.

2.
PLoS One ; 19(4): e0293861, 2024.
Article in English | MEDLINE | ID: mdl-38603714

ABSTRACT

The goal of this study was to characterize the bacterial diversity on different melon varieties grown in different regions of the US, and determine the influence that region, rind netting, and variety of melon has on the composition of the melon microbiome. Assessing the bacterial diversity of the microbiome on the melon rind can identify antagonistic and protagonistic bacteria for foodborne pathogens and spoilage organisms to improve melon safety, prolong shelf-life, and/or improve overall plant health. Bacterial community composition of melons (n = 603) grown in seven locations over a four-year period were used for 16S rRNA gene amplicon sequencing and analysis to identify bacterial diversity and constituents. Statistically significant differences in alpha diversity based on the rind netting and growing region (p < 0.01) were found among the melon samples. Principal Coordinate Analysis based on the Bray-Curtis dissimilarity distance matrix found that the melon bacterial communities clustered more by region rather than melon variety (R2 value: 0.09 & R2 value: 0.02 respectively). Taxonomic profiling among the growing regions found Enterobacteriaceae, Bacillaceae, Microbacteriaceae, and Pseudomonadaceae present on the different melon rinds at an abundance of ≥ 0.1%, but no specific core microbiome was found for netted melons. However, a core of Pseudomonadaceae, Bacillaceae, and Exiguobacteraceae were found for non-netted melons. The results of this study indicate that bacterial diversity is driven more by the region that the melons were grown in compared to rind netting or melon type. Establishing the foundation for regional differences could improve melon safety, shelf-life, and quality as well as the consumers' health.


Subject(s)
Bacillaceae , Cucumis melo , Cucurbitaceae , United States , Cucurbitaceae/microbiology , Cucumis melo/microbiology , RNA, Ribosomal, 16S/genetics , Bacteria/genetics , Enterobacteriaceae
3.
Insects ; 14(11)2023 Nov 09.
Article in English | MEDLINE | ID: mdl-37999062

ABSTRACT

The challenges that sweet potato whitefly (Bemisia tabaci) creates for vegetable production have increased in the southeastern U.S. Growers must use intensive insecticide spray programs to suppress extremely high populations during the fall growing season. Thus, the objective of this study was to evaluate the use of a reflective plastic mulch and an insect row cover as alternative methods to the current grower practices to manage whiteflies in zucchini (Cucurbita pepo) production. Field experiments were conducted with a two-level factorial experimental design of cover and plastic mulch treatments arranged in a randomized complete block design, with four replications in Georgia in 2020 and 2021, and in Alabama in 2021. Cover treatments consisted of an insect row cover installed on zucchini beds at transplanting and removed at flowering and a no-cover treatment, while plastic mulch treatments consisted of reflective silver plastic mulching and white plastic mulching. During all growing seasons, weather conditions were monitored, whitefly populations were sampled weekly, zucchini biomass accumulation was measured at five stages of crop development, and fruit yield was determined at harvesting. Warm and dry weather conditions early in the growing season resulted in increased whitefly populations, regardless of location and year. In general, the reflective silver plastic mulching reduced whitefly populations compared to the conventional white plastic by 87% in Georgia in 2020, 33% in Georgia in 2021, and 30% in Alabama in 2021. The insect row cover treatment reduced whitefly populations to zero until its removal. Consequently, zucchini plants grown with the insect row cover and reflective silver plastic mulching had an increased rate of biomass accumulation due to the lower insect pressure in all locations. Zucchini grown using silver reflective plastic mulch and row covers had an overall increase of 17% and 14% in total yield compared to white plastic mulch and no-cover treatments, respectively. Significant differences in yield among locations were likely due to severe whitefly pressure early in the fall season, and total yields in Georgia in 2020 (11,451 kg ha-1) were 25% lower than in Georgia in 2021 (15,177 kg ha-1) and in Alabama in 2021 (15,248 kg ha-1). In conclusion, silver plastic mulching and row covers reduced the whitefly population and increased biomass accumulation and total yield. These treatments can be considered ready-to-use integrated pest management practices for growers.

4.
Pathogens ; 12(9)2023 Sep 01.
Article in English | MEDLINE | ID: mdl-37764927

ABSTRACT

Whitefly, Bemisia tabaci Gennadius (B cryptic species), transmits cucurbit leaf crumple virus (CuLCrV) in a persistent fashion. CuLCrV affects several crops such as squash and snap bean in the southeastern United States. CuLCrV is often found as a mixed infection with whitefly transmitted criniviruses, such as cucurbit yellow stunting disorder virus (CYSDV) in hosts such as squash, or as a single infection in hosts such as snap bean. The implications of different host plants (inoculum sources) with varying infection status on CuLCrV transmission/epidemics is not clear. This study conducted a series of whitefly mediated CuLCrV transmission experiments. In the first experiment, three plants species: squash, snap bean, and tobacco were inoculated by whiteflies feeding on field-collected mixed-infected squash plants. In the second experiment, three plant species, namely squash, snap bean, and tobacco with varying infection status (squash infected with CuLCrV and CYSDV and snap bean and tobacco infected with CuLCrV), were used as inoculum sources. In the third experiment, squash plants with differential CuLCrV accumulation levels and infection status (either singly infected with CuLCrV or mixed infected with CuLCrV and CYSDV) were used as inoculum sources. Irrespective of plant species and its infection status, CuLCrV accumulation in whiteflies was dependent upon the CuLCrV accumulation in the inoculum source plants. Furthermore, differential CuLCrV accumulation in whiteflies resulted in differential transmission, CuLCrV accumulation, and disease phenotype in the recipient squash plants. Overall, results demonstrate that whitefly mediated CuLCrV transmission between host plants follows a virus density dependent phenomenon with implications for epidemics.

5.
Front Plant Sci ; 14: 1183249, 2023.
Article in English | MEDLINE | ID: mdl-37324677

ABSTRACT

Industrial hemp (Cannabis sativa L.) has demonstrated promise for phytoremediation due to an extensive root system, large biomass, and ability to survive under relatively high levels of heavy metals. However, little research has been conducted to determine the impact of heavy metal uptake in hemp grown for medicinal use. This study evaluated the potential for cadmium (Cd) uptake and its impact on growth, physiological responses, and transcript expression of metal transporter genes in a hemp variety grown for flower production. The cultivar 'Purple Tiger' was exposed to 0, 2.5, 10, and 25 mg·L-1 Cd in a greenhouse hydroponic study in two independent experiments. Plants exposed to 25 mg·L-1 Cd displayed stunted plant growth characteristics, reduced photochemical efficiency, and premature senescence suggesting Cd toxicity. At the two lower concentrations of Cd (2.5 and 10 mg·L-1 Cd), plant height, biomass, and photochemical efficiency were not affected, with chlorophyll content index (CCI) being slightly lower at 10 mg·L-1 Cd, compared to 2.5 mg·L-1 Cd. There were no consistent differences between the two experiments in total cannabidiol (CDB) and tetrahydrocannabinol (THC) concentrations in flower tissues at 2.5 and 10 mg·L-1 Cd, compared to the control treatment. Root tissue accumulated the highest amount of Cd compared to other tissues for all the Cd treatments, suggesting preferential root sequestration of this heavy metal in hemp. Transcript abundance analysis of heavy metal-associated (HMA) transporter genes suggested that all seven members of this gene family are expressed in hemp, albeit with higher expression in the roots than in the leaves. In roots, CsHMA3 was up-regulated at 45 and 68 d after treatment (DAT), and CsHMA1, CsHMA4, and CsHMA5 were upregulated only under long term Cd stress at 68 DAT, at 10 mg·L-1 Cd. Results suggest that expression of multiple HMA transporter genes in the root tissue may be upregulated in hemp exposed to 10 mg·L-1 Cd in a nutrient solution. These transporters could be involved in Cd uptake in the roots via regulating its transport and sequestration, and xylem loading for long distance transport of Cd to shoot, leaf, and flower tissues.

6.
Viruses ; 15(2)2023 01 26.
Article in English | MEDLINE | ID: mdl-36851571

ABSTRACT

Sida golden mosaic virus (SiGMV) was first detected from snap bean (Phaseolus vulgaris L.) in Florida in 2006 and recently in Georgia in 2018. Since 2018, it has caused significant economic losses to snap bean growers in Georgia. This study, using a SiGMV isolate field-collected from prickly sida (Sida spinosa L.), examined the putative host range, vector-mediated transmission, and SiGMV-modulated effects on host-vector interactions. In addition, this study analyzed the phylogenetic relationships of SiGMV with other begomoviruses reported from Sida spp. Host range studies confirmed that SiGMV can infect seasonal crops and perennial weed species such as snap bean, hollyhock (Alcea rosea L.), marsh mallow (Althaea officinalis L.), okra (Abelmoschus esculentus (L.) Moench), country mallow (Sida cordifolia L.), prickly sida (S. spinosa), and tobacco (Nicotiana tabacum L.). The incidence of infection ranged from 70 to 100%. SiGMV-induced symptoms and virus accumulation varied between hosts. The vector, Bemisia tabaci Gennadius, was able to complete its life cycle on all plant species, irrespective of SiGMV infection status. However, SiGMV infection in prickly sida and country mallow positively increased the fitness of whiteflies, whereas SiGMV infection in okra negatively influenced whitefly fitness. Whiteflies efficiently back-transmitted SiGMV from infected prickly sida, hollyhock, marsh mallow, and okra to snap bean, and the incidence of infection ranged from 27 to 80%. Complete DNA-A sequence from this study shared 97% identity with SiGMV sequences reported from Florida and it was determined to be closely related with sida viruses reported from the New World. These results suggest that SiGMV, a New World begomovirus, has a broad host range that would allow its establishment in the farmscapes/landscapes of the southeastern United States and is an emerging threat to snap bean and possibly other crops.


Subject(s)
Begomovirus , Mosaic Viruses , Phaseolus , Begomovirus/genetics , Phylogeny , Georgia , Crops, Agricultural
7.
Phytopathology ; 111(2): 258-267, 2021 Feb.
Article in English | MEDLINE | ID: mdl-32748732

ABSTRACT

Center rot of onion, caused by Pantoea ananatis, is an economically important disease in onion production in Georgia and elsewhere in the United States. Growers rely on frequent foliar applications of bactericides and, in some cases, plant defense inducers to manage this disease. However, regular prophylactic application of these chemicals is not cost-effective and may not be environmentally friendly. Thrips (Thrips tabaci and Frankliniella fusca) are vectors of P. ananatis, and their feeding may compromise the effectiveness of foliar applications against P. ananatis. In this study, foliar treatments with acibenzolar-S-methyl (Actigard 50WG), cupric hydroxide (Kocide 3000), and Actigard plus Kocide were evaluated for their effectiveness in the presence and absence of thrips infestation at two critical onion growth stages: bulb initiation and bulb swelling. Onion growth stage had no impact on the effectiveness of either Kocide or Actigard. In the absence of thrips, Kocide application resulted in reduced center rot incidence compared with Actigard, regardless of the growth stage. However, when thrips were present, the efficacy of both Kocide and Actigard was reduced, with bulb incidence not significantly different from the nontreated control. In independent greenhouse studies in the presence or absence of thrips, it was observed that use of protective chemicals (Kocide, Actigard, and their combinations) at different rates also affected pathogen progression into internal neck tissue and incidence of bulb rot. These results suggest that thrips infestation can reduce the efficacy of protective chemical treatments against P. ananatis. Thrips feeding on onion foliage and resulting feeding scars could facilitate P. ananatis entry and subsequently compromise the efficacy of protective chemical treatments. Therefore, an effective center rot management strategy should likely include thrips management in addition to bactericides at susceptible growth stages of onion.


Subject(s)
Pantoea , Thysanoptera , Animals , Onions , Plant Diseases/prevention & control
8.
Insects ; 11(12)2020 Nov 26.
Article in English | MEDLINE | ID: mdl-33255960

ABSTRACT

Bemisia tabaci is a whitefly species complex comprising important phloem feeding insect pests and plant virus vectors of many agricultural crops. Middle East-Asia Minor 1 (MEAM1) and Mediterranean (MED) are the two most invasive members of the B. tabaci species complex worldwide. The diversity of agroecosystems invaded by B. tabaci could potentially influence their population structure, but this has not been assessed at a farmscape level. A farmscape in this study is defined as heterogenous habitat with crop and non-crop areas spanning ~8 square kilometers. In this study, mitochondrial COI gene (mtCOI) sequences and six microsatellite markers were used to examine the population structure of B. tabaci MEAM1 colonizing different plant species at a farmscape level in Georgia, United States. Thirty-five populations of adult whiteflies on row and vegetable crops and weeds across major agricultural regions of Georgia were collected from fifteen farmscapes. Based on morphological features and mtCOI sequences, five species/cryptic species of whiteflies (B. tabaci MEAM1, B. tabaci MED, Dialeurodes citri, Trialeurodes abutiloneus, T. vaporariorum) were found. Analysis of 102 mtCOI sequences revealed the presence of a single B. tabaci MEAM1 haplotype across farmscapes in Georgia. Population genetics analyses (AMOVA, PCA and STRUCTURE) of B. tabaci MEAM1 (microsatellite data) revealed only minimal genetic differences among collected populations within and among farmscapes. Overall, our results suggest that there is a high level of gene flow among B. tabaci MEAM1 populations among farmscapes in Georgia. Frequent whitefly population explosions driven by a single or a few major whitefly-suitable hosts planted on a wide spatial scale may be the key factor behind the persistence of a single panmictic population over Georgia's farmscapes. These population structuring effects are useful for delineating the spatial scale at which whiteflies must be managed and predicting the speed at which alleles associated with insecticide resistance might spread.

9.
J Food Prot ; 82(12): 2023-2037, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31692392

ABSTRACT

Nearly one-half of foodborne illnesses in the United States can be attributed to fresh produce consumption. The preharvest stage of production presents a critical opportunity to prevent produce contamination in the field from contaminating postharvest operations and exposing consumers to foodborne pathogens. One produce-contamination route that is not often explored is the transfer of pathogens in the soil to edible portions of crops via splash water. We report here on the results from multiple field and microcosm experiments examining the potential for Salmonella contamination of produce crops via splash water, and the effect of soil moisture content on Salmonella survival in soil and concentration in splash water. In field and microcosm experiments, we detected Salmonella for up to 8 to 10 days after inoculation in soil and on produce. Salmonella and suspended solids were detected in splash water at heights of up to 80 cm from the soil surface. Soil-moisture conditions before the splash event influenced the detection of Salmonella on crops after the splash events-Salmonella concentrations on produce after rainfall were significantly higher in wet plots than in dry plots (geometric mean difference = 0.43 CFU/g; P = 0.03). Similarly, concentrations of Salmonella in splash water in wet plots trended higher than concentrations from dry plots (geometric mean difference = 0.67 CFU/100 mL; P = 0.04). These results indicate that splash transfer of Salmonella from soil onto crops can occur and that antecedent soil-moisture content may mediate the efficiency of microbial transfer. Splash transfer of Salmonella may, therefore, pose a hazard to produce safety. The potential for the risk of splash should be further explored in agricultural regions in which Salmonella and other pathogens are present in soil. These results will help inform the assessment of produce safety risk and the development of management practices for the mitigation of produce contamination.


Subject(s)
Food Microbiology , Salmonella , Soil Microbiology , Soil , Vegetables , Crops, Agricultural/microbiology , Microbial Viability , Salmonella/isolation & purification , Soil/chemistry , Vegetables/microbiology , Water Movements
10.
Sci Rep ; 9(1): 2503, 2019 02 21.
Article in English | MEDLINE | ID: mdl-30792431

ABSTRACT

The association of plant viruses with their vectors has significant implications for virus transmission and spread. Only a few studies, with even fewer pathosystems, have explored non-persistent (NP) virus-vector interactions that are presumed to be transient. We studied how a NP virus, Papaya ringspot virus (PRSV) influenced the behavior and biology of its vector, the melon aphid (Aphis gossypii Glover) and the non-vector, silverleaf whitefly (Bemisia tabaci Gennadius). We also assessed whether the fitness effects on aphids are modulated through changes in the host plant, squash (Cucurbita pepo L.) nutrient profile. The overall performance of A. gossypii was substantially higher on PRSV-infected plants, along with increased arrestment on PRSV-infected than non-infected plants. No such PRSV-modulated fitness effects were observed with B. tabaci. PRSV-infected plants had increased concentrations of free essential amino acids: threonine, arginine and lysine; non-essential amino acids: glycine and homocysteine; and soluble carbohydrates: galactose, raffinose and cellobiose. In general, PRSV encouraged long-term feeding and enhanced fitness of A. gossypii through host plant nutrient enrichment. These findings provide evidence for a NP virus mediated positive fitness effects on its vector, with no spillover fitness benefits to the non-vector within the same feeding guild.


Subject(s)
Cucurbita/genetics , Host-Pathogen Interactions/genetics , Insect Vectors/genetics , Potyvirus/genetics , Animals , Aphids/genetics , Aphids/virology , Cucurbita/growth & development , Cucurbita/virology , Disease Resistance/genetics , Genetic Vectors/genetics , Insect Vectors/pathogenicity , Plant Diseases/genetics , Plant Diseases/virology , Plant Viruses/genetics , Plant Viruses/pathogenicity , Potyvirus/pathogenicity
11.
Plant Dis ; 103(1): 44-50, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30388065

ABSTRACT

Fusarium wilt of watermelon caused by Fusarium oxysporum f. sp. niveum is a serious, widespread disease of watermelon throughout the southern United States. To investigate whether soil temperature affects disease development, three cultivars of triploid watermelon were transplanted March 17 to 21, April 7 to 11, and April 26 to May 2 in 2015 and 2016 at Charleston, SC, and Tifton, GA into fields naturally infested with F. oxysporum f. sp. niveum. Incidence of Fusarium wilt was lower with late-season than with early and midseason transplanting in all four experiments (P ≤ 0.01). Cultivar Citation had more wilted plants than the cultivars Fascination and Melody in three of four experiments (P ≤ 0.05). In South Carolina, planting date did not affect weight and number of marketable fruit ≥4.5 kg apiece. In Georgia in 2016, weight and number of marketable fruit were greater with late transplanting than with early and midseason transplanting. In both states, yield and value for Fascination and Melody were higher than for Citation. Soil temperature averaged over the 4-week period after transplanting was negatively correlated with disease incidence for all four experiments (r = -0.737, P = 0.006). Transplanting after mid-April and choosing a cultivar with resistance to F. oxysporum f. sp. niveum race 1, like Fascination, or tolerance, like Melody, can help manage Fusarium wilt of watermelon and increase marketable yields in the southern United States.


Subject(s)
Citrullus , Fusarium , Georgia , Plant Diseases , South Carolina
12.
Plant Dis ; 101(9): 1616-1620, 2017 Sep.
Article in English | MEDLINE | ID: mdl-30677327

ABSTRACT

Center rot, caused by Pantoea ananatis, has been one of the most important bacterial diseases of onion leading to considerable economic losses. Symptoms can be expressed in the onion foliage and bulb, with the pathogen moving from the infected leaves to bulb scales. However, little is known regarding which growth stage the plant is most susceptible to bulb infection and if there are differences in susceptibility to bulb infection among sweet onion cultivars. In this study, five cultivars of sweet onion (Pirate, Sweet Harvest, 1518, Granex YPRR, and 1407) were inoculated by clipping the tips of onion foliage and depositing 1 ml of 1 × 108 CFU/ml of P. ananatis suspension into the central leaf cavity. The inoculations were done at three growth stages (first leaf senescence, bulb initiation, and bulb swelling). Center rot incidence was assessed for precured and cured onion bulbs. In addition, total bulb incidence of center rot for each cultivar inoculated at three growth stages were also calculated. Total bulb center rot incidence was significantly higher for Granex YPRR (84%) compared with other cultivars. Also, cultivars 1518 (49%) and 1407 (33%) had significantly lower incidence of bulb infection compared with other tested cultivars. Onions were significantly more susceptible to bulb infection when inoculated during first leaf senescence (62%) as compared with bulb initiation (37%) and bulb swelling (31%) stages in precured bulbs (P = 0.041). Significantly higher incidence of center rot was observed for bulbs whose foliage were inoculated during first leaf senescence stage (64%) compared with bulb initiation (55%) and bulb swelling (52%) stages (P = 0.048). Interactions between onion cultivar and inoculation stage on center rot bulb incidence were not significant (P ≥ 0.218), when evaluated at different assessment periods. However, different cultivars displayed significant variability in susceptibility to bulb infection. The outcomes of this study may have implications in devising management strategies aimed at protecting most susceptible onion growth stages against P. ananatis.


Subject(s)
Onions , Pantoea , Onions/growth & development , Onions/microbiology , Pantoea/physiology , Plant Diseases/microbiology , Plant Leaves
13.
Mol Ecol ; 23(15): 3777-89, 2014 08.
Article in English | MEDLINE | ID: mdl-24673741

ABSTRACT

A broad range of environmental conditions likely regulate predator-prey population dynamics and impact the structure of these communities. Central to understanding the interplay between predator and prey populations and their importance is characterizing the corresponding trophic interactions. Here, we use a well-documented molecular approach to examine the structure of the community of natural enemies preying upon the squash bug, Anasa tristis, a herbivorous cucurbit pest that severely hinders organic squash and pumpkin production in the United States. Primer pairs were designed to examine the effects of organic management practices on the strength of these trophic connections and link this metric to measures of the arthropod predator complex density and diversity within an experimental open-field context. Replicated plots of butternut squash were randomly assigned to three treatments and were sampled throughout a growing season. Row-cover treatments had significant negative effects on squash bug and predator communities. In total, 640 predators were tested for squash bug molecular gut-content, of which 11% were found to have preyed on squash bugs, but predation varied over the season between predator groups (coccinellids, geocorids, nabids, web-building spiders and hunting spiders). Through the linking of molecular gut-content analysis to changes in diversity and abundance, these data delineate the complexity of interaction pathways on a pest that limits the profitability of organic squash production.


Subject(s)
Food Chain , Heteroptera , Organic Agriculture/methods , Pest Control, Biological/methods , Animals , Cucurbita , DNA Primers , Insecta , Molecular Sequence Data , Predatory Behavior , Sequence Analysis, DNA , Species Specificity , Spiders
14.
J Environ Sci Health B ; 48(3): 219-25, 2013.
Article in English | MEDLINE | ID: mdl-23356344

ABSTRACT

Bioaccumulation and entry of trace elements from soil into the food chain have made trace-elements major environmental pollutants. The main objective of this investigation was to study the impact of mixing native agricultural soil with municipal sewage sludge (SS) or SS mixed with yard waste (SS+YW) compost on total concentration of trace elements in soil, metals available to plants, and mobility of metals from soil into peppers and melon fruits. Regardless of soil treatment, the average concentrations of Ni, Cd, Pb, Cr, Cu, Zn, and Mo in melon fruits were 5.2, 0.7, 3.9, 0.9, 34.3, 96.1, and 3.5µg g(-1), respectively. Overall concentrations of Ni, Cd, Pb, and Zn in melon fruits were significantly greater (P < 0.05) than pepper fruits. No significant differences were found in Cr, Cu, and Mo concentrations between pepper and melon fruits at harvest time. Total metal concentrations and metal ions in soil available to melon and pepper plants were also determined. Total concentration of each metal in the soil was significantly greater than concentration of metal ions available to plants. Elevated Ni and Mo bioaccumulation factor (BAF > 1) of melon fruits of plants grown in SS+YW mixed soil is a characteristic that would be less favorable when plants grown on sites having high concentrations of these metals.


Subject(s)
Capsicum/metabolism , Cucurbitaceae/metabolism , Metals/analysis , Soil Pollutants/analysis , Trace Elements/analysis , Capsicum/chemistry , Cucurbitaceae/chemistry , Environmental Monitoring , Fruit/chemistry , Fruit/metabolism , Metals/metabolism , Refuse Disposal , Sewage/analysis , Soil/analysis , Soil Pollutants/metabolism , Trace Elements/metabolism
15.
Article in English | MEDLINE | ID: mdl-22870992

ABSTRACT

The mobility of heavy metals from soil into the food chain and their subsequent bioaccumulation has increased the attention they receive as major environmental pollutants. The objectives of this investigation were to: i) study the impact of mixing native agricultural soil with municipal sewage sludge (SS) or chicken manure (CM) on yield and quality of cabbage and broccoli, ii) quantify the concentration of seven heavy metals (Cd, Cr, Mo, Cu, Zn, Pb, and Ni) in soil amended with SS or CM, and iii) determine bioavailability of heavy metals to cabbage leaves and broccoli heads at harvest. Analysis of the two soil amendments used in this investigation indicated that Cr, Ni, Cu, Zn, Mo, Cd, Pb, and organic matter content were significantly greater (P < 0.05) in premixed sewage sludge than premixed chicken manure. Total cabbage and broccoli yields obtained from SS and CM mixed soil were both greater than those obtained from no-mulch (bare) soil. Concentration of Ni in cabbage leaves of plants grown in soil amended with CM was low compared to plants grown in no-mulch soil. No significant differences were found in Cd and Pb accumulation between cabbage and broccoli. Concentrations of Ni, Cu, Zn, and Mo were greater in broccoli than cabbage. Total metals and plant available metals were also determined in the native and amended soils. Results indicated that the concentration of heavy metals in soils did not necessary reflect metals available to plants. Regardless of soil amendments, the overall bioaccumulation factor (BAF) of seven heavy metals in cabbage leaves and broccoli heads revealed that cabbage and broccoli were poor accumulators of Cr, Ni, Cu, Cd, and Pb (BAF <1), while BAF values were >1 for Zn and Mo. Elevated Ni and Mo bioaccumulation factor (BAF >1) of cabbage grown in chicken manure mixed soil is a characteristic that would be less favorable when cabbage is grown on sites having high concentrations of these two metals.


Subject(s)
Brassica/chemistry , Manure , Metals, Heavy/analysis , Soil Pollutants/analysis , Animals , Chickens , Sewage/chemistry
16.
J Environ Sci Health B ; 47(5): 369-78, 2012.
Article in English | MEDLINE | ID: mdl-22424060

ABSTRACT

Endosulfan 3 EC, a mixture of α- and ß-stereo isomers, was sprayed on field-grown pepper, melon, and sweet potato plants at the recommended rate of 0.44 kg A.I. acre(-1). Plant tissue samples (leaves, fruits, or edible roots) were collected 1 h to 30 days following spraying and analyzed for endosulfan isomers (α- and ß-isomers). Analysis of samples was accomplished using a gas chromatograph (GC) equipped with a mass detector in total ion mode. The results indicated the formation of endosulfan sulfate as the major metabolite of endosulfan sulfite and the relatively higher persistence of the ß-isomers as compared to the α-isomer. The initial total residues (α- and ß-isomers plus endosulfan sulfate) were higher on leaves than on fruits. On pepper and melon fruits, the α-isomer, which is the more toxic to mammals, dissipated faster (T(1/2) = 1.22 and 0.95 d, respectively) than the less toxic ß-isomer (T(1/2) = 3.0 and 2.5 d, respectively). These results confirm the greater loss of the α-isomer compared to the ß-isomer, which can ultimately impact endosulfan dissipation in the environment. Additionally, the higher initial residues of endosulfan on pepper and sweet potato leaves should be considered of great importance for timing field operations and the safe entry of harvesters due to the high mammalian toxicity of endosulfan.


Subject(s)
Endosulfan/chemistry , Insecticides/chemistry , Vegetables/chemistry , Endosulfan/analogs & derivatives , Endosulfan/metabolism , Fruit/chemistry , Half-Life , Isomerism , Mass Spectrometry , Pesticide Residues/chemistry , Vegetables/growth & development
17.
J Agric Food Chem ; 51(18): 5319-25, 2003 Aug 27.
Article in English | MEDLINE | ID: mdl-12926877

ABSTRACT

Dietary intake of certain carotenoids has been associated with a reduced risk of disease. Kale (Brassica oleracea L. Acephala Group) has the highest levels of carotenoids lutein and beta-carotene, and is an excellent source of minerals among the green leafy vegetable crops. However, Brassica vegetables contain glucosinolate (GS) and S-methylcysteine sulfoxide (MCSO). While these sulfur compounds have medicinal value, they are also responsible for the bitter, acrid flavors that are often regarded as objectionable by consumers. Therefore, the objectives of this study were to investigate the influence of increased S fertility levels on (1) elemental accumulation, (2) GS and MCSO production, and (3) the accumulation patterns of carotenoid pigments in the leaves of three kale cultivars. Winterbor, Redbor, and Toscano kale were greenhouse-grown using nutrient solution culture with S treatment concentrations of 4, 8, 16, 32, and 64 mg of S/L. Decreasing S fertility decreased S leaf content, but increased the levels of Mg and Ca accumulation, two important minerals for human health. Levels of GS and MSCO decreased in response to a decreasing S level in nutrient solution. However, accumulation of lutein and beta-carotene was unaffected by S treatment. Lowering the S fertility in the production of kale should decrease the levels of negative flavors associated with high levels of GS and MCSO without affecting carotenoid pigment levels. Understanding the combined impact of fertility on flavor compounds and carotenoid pigments may help improve consumer acceptance of phytonutritionally enhanced vegetable crops.


Subject(s)
Brassica/chemistry , Carotenoids/analysis , Cysteine/analogs & derivatives , Fertilizers , Sulfur/administration & dosage , Taste , Brassica/growth & development , Calcium/analysis , Cysteine/analysis , Glucosinolates/analysis , Lutein/analysis , Magnesium/analysis , Plant Leaves/chemistry , Sulfur/analysis , beta Carotene/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...