Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
J Nutr Biochem ; 31: 150-65, 2016 05.
Article in English | MEDLINE | ID: mdl-27133434

ABSTRACT

The objective of this study was to determine if consuming an extractable or nonextractable fraction of table grapes reduced the metabolic consequences of consuming a high-fat, American-type diet. Male C57BL/6J mice were fed a low fat (LF) diet, a high fat (HF) diet, or an HF diet containing whole table grape powder (5% w/w), an extractable, polyphenol-rich (HF-EP) fraction, a nonextractable, polyphenol-poor (HF-NEP) fraction or equal combinations of both fractions (HF-EP+NEP) from grape powder for 16weeks. Mice fed the HF-EP and HF-EP+NEP diets had lower percentages of body fat and amounts of white adipose tissue (WAT) and improved glucose tolerance compared to the HF-fed controls. Mice fed the HF-EP+NEP diet had lower liver weights and triglyceride (TG) levels compared to the HF-fed controls. Mice fed the HF-EP+NEP diets had higher hepatic mRNA levels of hormone sensitive lipase and adipose TG lipase, and decreased expression of c-reactive protein compared to the HF-fed controls. In epididymal (visceral) WAT, the expression levels of several inflammatory genes were lower in mice fed the HF-EP and HF-EP+NEP diets compared to the HF-fed controls. Mice fed the HF diets had increased myeloperoxidase activity and impaired localization of the tight junction protein zonula occludens-1 in ileal mucosa compared to the HF-EP and HF-NEP diets. Several of these treatment effects were associated with alterations in gut bacterial community structure. Collectively, these data demonstrate that the polyphenol-rich, EP fraction from table grapes attenuated many of the adverse health consequences associated with consuming an HF diet.


Subject(s)
Adiposity/drug effects , Biomarkers/metabolism , Diet, High-Fat , Gastrointestinal Microbiome/drug effects , Insulin Resistance , Polyphenols/pharmacology , Vitis/chemistry , Animals , Male , Mice , Mice, Inbred C57BL
2.
J Nutr Biochem ; 27: 123-35, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26423887

ABSTRACT

Our objective was to determine if consuming table grapes reduces adiposity and its metabolic consequences and alters gut microbiota in mice fed a high-fat (HF), butter-rich diet. C57BL/6J mice were fed a low-fat (LF) diet or HF diet with 3% or 5% grapes for 11weeks. Total body and inguinal fat were moderately but significantly reduced in mice fed both levels of grapes compared to their controls. Mice fed 5% grapes had lower liver weights and triglyceride levels and decreased expression of glycerol-3-phosphate acyltransferase (Gpat1) compared to the 5% controls. Mice fed 3% grapes had lower hepatic mRNA levels of peroxisome proliferator-activated receptor gamma 2, sterol-CoA desaturase 1, fatty-acid binding protein 4 and Gpat1 compared to the 3% controls. Although grape feeding had only a minor impact on markers of inflammation or lipogenesis in adipose tissue or intestine, 3% of grapes decreased the intestinal abundance of sulfidogenic Desulfobacter spp. and the Bilophila wadsworthia-specific dissimilatory sulfite reductase gene and tended to increase the abundance of the beneficial bacterium Akkermansia muciniphila compared to controls. In addition, Bifidobacterium, Lactobacillus, Allobaculum and several other genera correlated negatively with adiposity. Allobaculum in particular was increased in the LF and 3% grapes groups compared to the HF-fed controls. Notably, grape feeding attenuated the HF-induced impairment in epithelial localization of the intestinal tight junction protein zonula occludens. Collectively, these data indicate that some of the adverse health consequences of consuming an HF diet rich in saturated fat can be attenuated by table grape consumption.


Subject(s)
Adiposity , Butter , Gastrointestinal Microbiome , Lipogenesis , Liver/metabolism , Vitis , Absorptiometry, Photon , Animals , Mice , RNA, Ribosomal, 16S/genetics
3.
J Nutr Biochem ; 26(6): 616-25, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25801353

ABSTRACT

The objective of this study was to determine the extent to which a low level of trans-10, cis-12 (10,12) conjugated linoleic acid (CLA) decreases adiposity and increases browning in overweight mice, its dependence on inflammatory signaling and potential synergistic effects of daily exercise. Young, Sv129 male mice were fed a high-fat diet for 5 weeks to make them fat and glucose intolerant and then switch them to a low-fat diet with or without 0.1% 10,12 CLA, sodium salicylate or exercise for another 7 weeks. 10,12 CLA decreased white adipose tissue (WAT) and brown adipose tissue mass, and increased the messenger RNA and protein levels, and activities of enzymes associated with thermogenesis or fatty acid oxidation in WAT. Mice fed 10,12 CLA had lower body temperatures compared to controls during cold exposure, which coincided with decreased adiposity. Although sodium salicylate decreased 10,12 CLA-mediated increases in markers of inflammation in WAT, it did not affect other outcomes. Exercise had no further effect on the outcomes measured. Collectively, these data indicate that 10,12 CLA-mediated reduction of adiposity is independent of inflammatory signaling, and possibly due to up-regulation of fatty acid oxidation and heat production in order to regulate body temperature. Although this low level of 10,12 CLA reduced adiposity in overweight mice, hepatomegaly and inflammation are major health concerns.


Subject(s)
Adipose Tissue, Brown/drug effects , Adiposity/drug effects , Linoleic Acids, Conjugated/pharmacology , Overweight/therapy , Absorptiometry, Photon , Adipose Tissue, White/drug effects , Animals , Apoptosis , Cyclooxygenase 2/genetics , Cyclooxygenase 2/metabolism , Diet, Fat-Restricted , Diet, High-Fat/adverse effects , Disease Models, Animal , Lipid Metabolism/drug effects , Liver/drug effects , Liver/metabolism , Male , Mice , Organ Size/drug effects , Physical Conditioning, Animal , RNA, Messenger/genetics , RNA, Messenger/metabolism , Triglycerides/metabolism , Up-Regulation
4.
Nutr Res ; 34(1): 85-93, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24418250

ABSTRACT

High-fat diets (HFD) promote the development of both obesity and fatty liver disease through the up-regulation of hepatic lipogenesis. Insulin resistance, a hallmark of both conditions, causes dysfunctional fuel partitioning and increases in lipogenesis. Recent work has demonstrated that systemic insulin resistance occurs in as little as the first 72 hours of an HFD, suggesting the potential for hepatic disruption with HFD at this time point. The current study sought to determine differences in expression of lipogenic genes between sexes in 3-month-old male and female Long-Evans rats after 72 hours of a 40% HFD or a 17% fat (chow) diet. Owing to the response of estrogen on hepatic signaling, we hypothesized that a sexual dimorphic response would occur in the expression of lipogenic enzymes, inflammatory cytokines, apoptotic, and cell repair and remodeling genes. Both sexes consumed more energy when fed an HFD compared with their low fat-fed controls. However, only the males fed the HFD had a significant increase in body fat. Regardless of sex, HFD caused down-regulation of lipogenic and inflammatory genes. Interestingly, females fed an HFD had up-regulated expression of apoptotic and cell repair-related genes compared with the males. This may suggest that females are more responsive to the acute hepatic injury effects caused by HFDs. In summary, neither male nor female rats displayed disrupted hepatic metabolic pathways after 72 hours of the HFD treatment. In addition, female rats appear to have protection from increases in fat deposition, possibly due to increased caloric expenditure; male rats fed an HFD were less active, as demonstrated by distance traveled in their home cage.


Subject(s)
Diet, High-Fat/adverse effects , Gene Expression Regulation , Inflammation/genetics , Lipogenesis/genetics , Liver/metabolism , Animals , Apoptosis/genetics , Body Composition , DNA-Binding Proteins/genetics , Energy Intake , Female , Male , Physical Exertion , Rats , Rats, Long-Evans , Regulatory Factor X Transcription Factors , Sex Factors , Signal Transduction/genetics , Transcription Factors/genetics , Weight Gain , X-Box Binding Protein 1
5.
Neurotoxicol Teratol ; 34(1): 27-36, 2012.
Article in English | MEDLINE | ID: mdl-22056924

ABSTRACT

Overexposure to waterborne manganese (Mn) is linked with cognitive impairment in children and neurochemical abnormalities in other experimental models. In order to characterize the threshold between Mn-exposure and altered neurochemistry, it is important to identify biomarkers that positively correspond with brain Mn-accumulation. The objective of this study was to identify Mn-induced alterations in plasma, liver, and brain metabolites using liquid/gas chromatography-time of flight-mass spectrometry metabolomic analyses; and to monitor corresponding Mn-induced behavior changes. Weanling Sprague-Dawley rats had access to deionized drinking water either Mn-free or containing 1g Mn/L for 6 weeks. Behaviors were monitored during the sixth week for a continuous 24h period while in a home cage environment using video surveillance. Mn-exposure significantly increased liver, plasma, and brain Mn concentrations compared to control, specifically targeting the globus pallidus (GP). Mn significantly altered 98 metabolites in the brain, liver, and plasma; notably shifting cholesterol and fatty acid metabolism in the brain (increased oleic and palmitic acid; 12.57 and 15.48 fold change (FC), respectively), and liver (increased oleic acid, 14.51 FC; decreased hydroxybutyric acid, -14.29 FC). Additionally, Mn-altered plasma metabolites homogentisic acid, chenodeoxycholic acid, and aspartic acid correlated significantly with GP and striatal Mn. Total distance traveled was significantly increased and positively correlated with Mn-exposure, while nocturnal stereotypic and exploratory behaviors were reduced with Mn-exposure and performed largely during the light cycle compared to unexposed rats. These data provide putative biomarkers for Mn-neurotoxicity and suggest that Mn disrupts the circadian cycle in rats.


Subject(s)
Behavior, Animal/drug effects , Brain/drug effects , Liver/drug effects , Manganese Poisoning/metabolism , Manganese/metabolism , Stereotyped Behavior/drug effects , Water Pollutants, Chemical/adverse effects , Water Pollutants, Chemical/blood , Animals , Behavior, Animal/physiology , Brain/blood supply , Brain/physiopathology , Disease Models, Animal , Liver/blood supply , Liver/physiopathology , Male , Manganese/blood , Manganese Poisoning/blood , Manganese Poisoning/physiopathology , Rats , Rats, Sprague-Dawley , Stereotyped Behavior/physiology
6.
Physiol Behav ; 103(1): 117-21, 2011 Apr 18.
Article in English | MEDLINE | ID: mdl-21167190

ABSTRACT

There are several techniques used to measure body composition in experimental models including dual energy X-ray absorptiometry (DEXA) and quantitative magnetic resonance (QMR). DEXA/QMR data have been compared in mice, but have not been compared previously in rats. The goal of this study was to compare DEXA and QMR data in rats. We used rats that varied by sex, diet, and age, in addition we compared dissected samples containing subcutaneous (pelt) or visceral fat (carcass). The data means were compared by focusing on the differences between DEXA/QMR data using a series of scatter plots without assuming that either method is more accurate as suggested by Bland and Altman. DEXA/QMR data did not agree sufficiently in carcass or pelt FM or in pelt LBM. The variation observed within these groups suggests that DEXA and QMR measurements are not comparable. Carcass LBM in young rats did yield comparable data once the data for middle-aged rats was removed. The variation in our data may be a result of different direct and indirect measures that DEXA and QMR technologies use to quantify FM and LBM. DEXA measures FM and estimates fat-free mass. In contrast, QMR uses separate equations of magnetic resonance to measure FM, LBM, total body water and free water. We found that QMR overestimated body mass in our middle-aged rats, and this increased the variation between methods. Our goal was to evaluate the precision of DEXA/QMR data in rats to determine if they agree sufficiently to allow direct comparison of data between methods. However DEXA and QMR did not yield the same estimates of FM or LBM for the majority of our samples.


Subject(s)
Absorptiometry, Photon/methods , Body Composition , Fats/analysis , Magnetic Resonance Imaging/methods , Adipose Tissue/chemistry , Age Factors , Animals , Body Mass Index , Bone and Bones/chemistry , Dietary Fats/adverse effects , Female , Male , Muscles/chemistry , Obesity/etiology , Obesity/metabolism , Obesity/pathology , Rats , Rats, Long-Evans , Sex Factors
7.
Neurotoxicology ; 31(6): 639-46, 2010 Dec.
Article in English | MEDLINE | ID: mdl-20832424

ABSTRACT

Manganese (Mn) accumulation in the brain has been shown to alter the neurochemistry of the basal ganglia. Mn-induced alterations in dopamine biology are fairly well understood, but recently more evidence has emerged characterizing the role of γ-aminobutyric acid (GABA) in this dysfunction. The purpose of this study was to determine if the previously observed Mn-induced increase in extracellular GABA (GABA(EC)) was due to altered GABA transporter (GAT) function, and whether Mn perturbs other amino acid neurotransmitters, namely taurine and glycine (known modulators of GABA). Extracellular GABA, taurine, and glycine concentrations were collected from the striatum of control (CN) or Mn-exposed Sprague-Dawley rats using in vivo microdialysis, and the GAT inhibitor nipecotic acid (NA) was used to probe GAT function. Tissue and extracellular Mn levels were significantly increased, and the Fe:Mn ratio was decreased 36-fold in the extracellular space due to Mn-exposure. NA led to a 2-fold increase in GABA(EC) of CNs, a response that was attenuated by Mn. Taurine responded inversely to GABA, and a novel 10-fold increase in taurine was observed after the removal of NA in CNs. Mn blunted this response and nearly abolished extracellular taurine throughout collection. Striatal taurine transporter (Slc6a6) mRNA levels were significantly increased with Mn-exposure, and Mn significantly increased (3)H-Taurine uptake after 3-min exposure in primary rat astrocytes. These data suggest that Mn increases GABA(EC) by inhibiting the function of GAT, and that perturbed taurine homeostasis potentially impacts neural function by jeopardizing the osmoregulatory and neuromodulatory functions of taurine in the brain.


Subject(s)
Corpus Striatum/growth & development , Corpus Striatum/metabolism , Extracellular Space/metabolism , Homeostasis/physiology , Manganese/toxicity , Taurine/metabolism , gamma-Aminobutyric Acid/metabolism , Animals , Cells, Cultured , Corpus Striatum/drug effects , Extracellular Space/drug effects , Homeostasis/drug effects , Male , Metabolic Clearance Rate/drug effects , Metabolic Clearance Rate/physiology , Random Allocation , Rats , Rats, Sprague-Dawley
8.
Bone ; 46(5): 1408-15, 2010 May.
Article in English | MEDLINE | ID: mdl-20102755

ABSTRACT

There are few studies describing the extent to which low iron status affects osteoblastogenesis, despite evidence that iron deficiency produces adverse effects on bone density. The purpose of this study was to evaluate alterations in intracellular iron status by measuring iron-regulated gene and protein expression and to describe development of osteoblast phenotype in primary cells treated with iron chelator deferoxamine (DFOM) during differentiation. Using the well-described fetal rat calvaria model, cells were incubated with 0-8 microM DFOM throughout differentiation (confluence to day (D) 21), or only during early differentiation (confluence to D13-15) or late differentiation (D13-15 to D21). Changes in intracellular iron status were determined by measuring alterations in gene and protein expression of transferrin receptor and ferritin light chain and heavy chain. Development of osteoblast phenotype was monitored by measuring expression of genes that are known to be up-regulated during differentiation, analyzing the percentage of mineralized surface area, and counting the number of multi-layered bone nodules at the end of culture. Results indicate that treatment throughout differentiation with 8 microM DFOM alters iron-regulated genes and proteins by mid-differentiation (D13-15) in a pattern consistent with iron deficiency with concomitant down-regulation of osteoblast phenotype genes, especially osteocalcin. Additionally, alkaline phosphatase staining was lower and there was about 70% less mineralized surface area (p<0.05) by D21 in wells treated throughout differentiation with 8 microM DFOM compared to control. Down-regulation of osteocalcin and alkaline phosphatase mRNA (p<0.05) and suppressed mineralization (p<0.05) was also evident at D21 in cells treated only during early differentiation. In contrast, treatment during late differentiation did not alter osteoblastic outcomes by D21. In conclusion, it appears that iron is required for normal osteoblast phenotype development, and that early rather than late differentiation events may be more sensitive to iron availability.


Subject(s)
Deferoxamine/pharmacology , Fetus/cytology , Iron-Regulatory Proteins/metabolism , Iron/metabolism , Osteoblasts/drug effects , Osteoblasts/metabolism , Siderophores/pharmacology , Skull/cytology , Alkaline Phosphatase/genetics , Alkaline Phosphatase/metabolism , Animals , Blotting, Western , Cell Differentiation/drug effects , Cells, Cultured , Female , Gene Expression/drug effects , Iron-Regulatory Proteins/genetics , Osteoblasts/cytology , Osteocalcin/genetics , Osteocalcin/metabolism , Pregnancy , Rats , Rats, Sprague-Dawley , Reverse Transcriptase Polymerase Chain Reaction
9.
Brain Res ; 1281: 1-14, 2009 Jul 24.
Article in English | MEDLINE | ID: mdl-19481535

ABSTRACT

Manganese (Mn) is an essential trace element, but overexposure is characterized by Parkinson's like symptoms in extreme cases. Previous studies have shown that Mn accumulation is exacerbated by dietary iron deficiency (ID) and disturbances in norepinephrine (NE) have been reported. Because behaviors associated with Mn neurotoxicity are complex, the goal of this study was to examine the effects of Mn exposure and ID-associated Mn accumulation on NE uptake in synaptosomes, extracellular NE concentrations, and expression of NE transport and receptor proteins. Sprague-Dawley rats were assigned to four dietary groups: control (CN; 35 mg Fe/kg diet), iron-deficient (ID; 6 mg Fe/kg diet), CN with Mn exposure (via the drinking water; 1 g Mn/L) (CNMn), and ID with Mn (IDMn). (3)H-NE uptake decreased significantly (R=-0.753, p=0.001) with increased Mn concentration in the locus coeruleus, while decreased Fe was associated with decreased uptake of (3)H-NE in the caudate putamen (R=0.436, p=0.033) and locus coeruleus (R=0.86; p<0.001). Extracellular concentrations of NE in the caudate putamen were significantly decreased in response to Mn exposure and ID (p<0.001). A diverse response of Mn exposure and ID was observed on mRNA and protein expression of NE transporter (NET) and alpha(2) adrenergic receptor. For example, elevated brain Mn and decreased Fe caused an approximate 50% decrease in NET and alpha(2) adrenergic receptor protein expression in several brain regions, with reductions in mRNA expression also observed. These data suggest that Mn exposure results in a decrease in NE uptake and extracellular NE concentrations via altered expression of transport and receptor proteins.


Subject(s)
Brain/growth & development , Iron Deficiencies , Manganese/toxicity , Norepinephrine Plasma Membrane Transport Proteins/metabolism , Norepinephrine/metabolism , Receptors, Adrenergic, alpha-2/metabolism , Animals , Blotting, Western , Brain/drug effects , Brain/metabolism , Caudate Nucleus/drug effects , Caudate Nucleus/growth & development , Caudate Nucleus/metabolism , Extracellular Space/metabolism , Iron/blood , Locus Coeruleus/drug effects , Locus Coeruleus/growth & development , Locus Coeruleus/metabolism , Male , Manganese/blood , Microdialysis , Models, Neurological , Polymerase Chain Reaction , Putamen/drug effects , Putamen/growth & development , Putamen/metabolism , RNA, Messenger/metabolism , Random Allocation , Rats , Tritium
10.
Neurotoxicology ; 29(6): 1044-53, 2008 Nov.
Article in English | MEDLINE | ID: mdl-18771689

ABSTRACT

Unlike other essential trace elements (e.g., zinc and iron) it is the toxicity of manganese (Mn) that is more common in human populations than its deficiency. Data suggest alterations in dopamine biology may drive the effects associated with Mn neurotoxicity, though recently gamma-aminobutyric acid (GABA) has been implicated. In addition, iron deficiency (ID), a common nutritional problem, may cause disturbances in neurochemistry by facilitating accumulation of Mn in the brain. Previous data from our lab have shown decreased brain tissue levels of GABA as well as decreased (3)H-GABA uptake in synaptosomes as a result of Mn exposure and ID. These results indicate a possible increase in the concentration of extracellular GABA due to alterations in expression of GABA transport and receptor proteins. In this study weanling-male Sprague-Dawley rats were randomly placed into one of four dietary treatment groups: control (CN; 35mg Fe/kg diet), iron-deficient (ID; 6mg Fe/kg diet), CN with Mn supplementation (via the drinking water; 1g Mn/l) (CNMn), and ID with Mn supplementation (IDMn). Using in vivo microdialysis, an increase in extracellular GABA concentrations in the striatum was observed in response to Mn exposure and ID although correlational analysis reveals that extracellular GABA is related more to extracellular iron levels and not Mn. A diverse effect of Mn exposure and ID was observed in the regions examined via Western blot and RT-PCR analysis, with effects on mRNA and protein expression of GAT-1, GABA(A), and GABA(B) differing between and within the regions examined. For example, Mn exposure reduced GAT-1 protein expression by approximately 50% in the substantia nigra, while increasing mRNA expression approximately four-fold, while in the caudate putamen mRNA expression was decreased with no effect on protein expression. These data suggest that Mn exposure results in an increase in extracellular GABA concentrations via altered expression of transport and receptor proteins, which may be the basis of the neurological characteristics of manganism.


Subject(s)
Brain/drug effects , Extracellular Fluid/drug effects , GABA Plasma Membrane Transport Proteins/metabolism , Gene Expression Regulation, Developmental/drug effects , Manganese/pharmacology , RNA, Messenger/metabolism , Receptors, GABA/metabolism , Trace Elements/pharmacology , gamma-Aminobutyric Acid/metabolism , Animals , Animals, Newborn , Brain/growth & development , Extracellular Fluid/metabolism , GABA Plasma Membrane Transport Proteins/genetics , Male , Rats , Rats, Sprague-Dawley , Receptors, GABA/genetics
11.
Environ Toxicol Pharmacol ; 23(2): 179-84, 2007 Mar.
Article in English | MEDLINE | ID: mdl-17387379

ABSTRACT

Manganese (Mn) is an essential nutrient, though exposure to high concentrations may result in neurotoxicity characterized by alterations in dopamine neurobiology. To date, it remains elusive how and why Mn targets dopaminergic neurons although recently the role of the dopamine transporter has been suggested. Our primary goal of this study was to examine the potential roles of the monoamine transporters, dopamine transporter (DAT), serotonin transporter (SERT) and norepinephrine transporter (NET), in neuronal Mn transport. Using striatal synaptosomes, we found that only inhibition of DAT significantly decreased Mn accumulation. Furthermore, weanling rats chronically exposed to Mn, significantly accumulated Mn in several brain regions. However, rats receiving the specific DAT inhibitor GBR12909 (1 mg/kg bw, three times/week; four weeks) had significantly lower Mn levels only in the globus pallidus compared to saline-treated rats (p<0.05). Our data show that inhibition of DAT exclusively inhibits Mn accumulation in the globus pallidus during chronic exposure.

12.
Toxicol Sci ; 95(1): 188-95, 2007 Jan.
Article in English | MEDLINE | ID: mdl-17032702

ABSTRACT

Iron (Fe) is an essential trace metal involved in numerous cellular processes. Iron deficiency (ID) is reported as the most prevalent nutritional problem worldwide. Increasing evidence suggests that ID is associated with altered neurotransmitter metabolism and a risk factor for manganese (Mn) neurotoxicity. Though recent studies have established differences in which the female brain responds to ID-related neurochemical alterations versus the male brain, little is known about the interactions of dietary ID, Mn exposure, and sex on gamma-amino butyric acid (GABA). Male and female Sprague-Dawley rats were randomly divided into four dietary treatment groups: control (CN), control/Mn supplemented, ID, and ID/Mn supplemented. After 6 weeks of treatment, both ID diets caused a highly significant decrease in Fe concentrations across all brain regions compared to CN in both sexes. Both ID and Mn supplementation led to significant accumulation of Mn across all brain regions in both sexes. There was no main effect of sex on Fe or Mn accumulation. Striatal synaptosomes were utilized to examine the effect of dietary intervention on (3)H-GABA uptake. At 4 weeks, there was a significant correlation between Fe concentration and (3)H-GABA uptake in male rats (p < 0.05). At 6 weeks, there was a significant inverse correlation between Mn concentration and (3)H-GABA uptake in male and female rats and a postitive correlation between Fe concentration and (3)H-GABA uptake in female rats (p < 0.05). In conclusion, ID-associated Mn accumulation is similar in both sexes, with Mn levels affecting GABA uptake in both sexes in a comparable fashion.


Subject(s)
Brain/metabolism , Iron Compounds/metabolism , Manganese Compounds/metabolism , Sex Characteristics , gamma-Aminobutyric Acid/metabolism , Animals , Body Weight , Caudate Nucleus/metabolism , Cerebellum/metabolism , Female , Globus Pallidus/metabolism , Hematocrit , Male , Manganese Compounds/blood , Putamen/metabolism , Rats , Rats, Sprague-Dawley , Sex Factors , Substantia Nigra/metabolism , Synaptosomes/metabolism , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...