Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Chem Phys ; 159(4)2023 Jul 28.
Article in English | MEDLINE | ID: mdl-37497820

ABSTRACT

Simulations of laser-induced electron dynamics in a molecular system are performed using time-dependent (TD) equation-of-motion (EOM) coupled-cluster (CC) theory. The target system has been chosen to highlight potential shortcomings of truncated TD-EOM-CC methods [represented in this work by TD-EOM-CC with single and double excitations (TD-EOM-CCSD)], where unphysical spectroscopic features can emerge. Specifically, we explore driven resonant electronic excitations in magnesium fluoride in the proximity of an avoided crossing. Near the avoided crossing, the CCSD similarity-transformed Hamiltonian is defective, meaning that it has complex eigenvalues, and oscillator strengths may take on negative values. When an external field is applied to drive transitions to states exhibiting these traits, unphysical dynamics are observed. For example, the stationary states that make up the time-dependent state acquire populations that can be negative, exceed one, or even complex-valued.

2.
J Phys Chem A ; 125(24): 5438-5447, 2021 Jun 24.
Article in English | MEDLINE | ID: mdl-34121405

ABSTRACT

A time-dependent (TD) formulation of equation-of-motion coupled-cluster (EOM-CC) theory can provide excited-state information over an arbitrarily wide energy window with a reduced memory footprint relative to conventional, frequency-domain EOM-CC theory. However, the floating-point costs of the time-integration required by TD-EOM-CC are generally far larger than those of the frequency-domain form of the approach. This work considers the potential of the short iterative Lanczos (SIL) integration scheme [J. Chem. Phys. 1986, 85, 5870-5876] to reduce the floating-point costs of TD-EOM-CC simulations. Low-energy and K-edge absorption features for small molecules are evaluated using TD-EOM-CC with single and double excitations, with the time-integrations carried out via SIL and fourth-order Runge-Kutta (RK4) schemes. Spectra derived from SIL- and RK4-driven simulations are nearly indistinguishable, and with an appropriately chosen subspace dimension, the SIL requires far fewer floating-point operations than are required by RK4. For K-edge spectra, SIL is the more efficient scheme by an average factor of 7.2.

SELECTION OF CITATIONS
SEARCH DETAIL
...