Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
1.
Viruses ; 12(6)2020 06 10.
Article in English | MEDLINE | ID: mdl-32532083

ABSTRACT

Next-generation sequencing (NGS)-based HIV drug resistance (HIVDR) assays outperform conventional Sanger sequencing in scalability, sensitivity, and quantitative detection of minority resistance variants. Thus far, HIVDR assays have been applied primarily in research but rarely in clinical settings. One main obstacle is the lack of standardized validation and performance evaluation systems that allow regulatory agencies to benchmark and accredit new assays for clinical use. By revisiting the existing principles for molecular assay validation, here we propose a new validation and performance evaluation system that helps to both qualitatively and quantitatively assess the performance of an NGS-based HIVDR assay. To accomplish this, we constructed a 70-specimen proficiency test panel that includes plasmid mixtures at known ratios, viral RNA from infectious clones, and anonymized clinical specimens. We developed assessment criteria and benchmarks for NGS-based HIVDR assays and used these to assess data from five separate MiSeq runs performed in two experienced HIVDR laboratories. This proposed platform may help to pave the way for the standardization of NGS HIVDR assay validation and performance evaluation strategies for accreditation and quality assurance purposes in both research and clinical settings.


Subject(s)
Drug Resistance, Viral , HIV Infections/virology , HIV-1/genetics , High-Throughput Nucleotide Sequencing/methods , Anti-HIV Agents/pharmacology , HIV-1/drug effects , HIV-1/isolation & purification , High-Throughput Nucleotide Sequencing/standards , Humans , RNA, Viral/genetics
2.
Front Neurosci ; 12: 230, 2018.
Article in English | MEDLINE | ID: mdl-29692703

ABSTRACT

Background: The prevalence of dementia in Parkinson disease (PD) increases dramatically with advancing age, approaching 80% in patients who survive 20 years with the disease. Increasing evidence suggests clinical, pathological and genetic overlap between Alzheimer disease, dementia with Lewy bodies and frontotemporal dementia with PD. However, the contribution of the dementia-causing genes to PD risk, cognitive impairment and dementia in PD is not fully established. Objective: To assess the contribution of coding variants in Mendelian dementia-causing genes on the risk of developing PD and the effect on cognitive performance of PD patients. Methods: We analyzed the coding regions of the amyloid-beta precursor protein (APP), Presenilin 1 and 2 (PSEN1, PSEN2), and Granulin (GRN) genes from 1,374 PD cases and 973 controls using pooled-DNA targeted sequence, human exome-chip and whole-exome sequencing (WES) data by single variant and gene base (SKAT-O and burden tests) analyses. Global cognitive function was assessed using the Mini-Mental State Examination (MMSE) or the Montreal Cognitive Assessment (MoCA). The effect of coding variants in dementia-causing genes on cognitive performance was tested by multiple regression analysis adjusting for gender, disease duration, age at dementia assessment, study site and APOE carrier status. Results: Known AD pathogenic mutations in the PSEN1 (p.A79V) and PSEN2 (p.V148I) genes were found in 0.3% of all PD patients. There was a significant burden of rare, likely damaging variants in the GRN and PSEN1 genes in PD patients when compared with frequencies in the European population from the ExAC database. Multiple regression analysis revealed that PD patients carrying rare variants in the APP, PSEN1, PSEN2, and GRN genes exhibit lower cognitive tests scores than non-carrier PD patients (p = 2.0 × 10-4), independent of age at PD diagnosis, age at evaluation, APOE status or recruitment site. Conclusions: Pathogenic mutations in the Alzheimer disease-causing genes (PSEN1 and PSEN2) are found in sporadic PD patients. PD patients with cognitive decline carry rare variants in dementia-causing genes. Variants in genes causing Mendelian neurodegenerative diseases exhibit pleiotropic effects.

3.
Mol Neurodegener ; 11: 29, 2016 Apr 19.
Article in English | MEDLINE | ID: mdl-27094865

ABSTRACT

BACKGROUND: Most sequencing studies in Parkinson's disease (PD) have focused on either a particular gene, primarily in familial and early onset PD samples, or on screening single variants in sporadic PD cases. To date, there is no systematic study that sequences the most common PD causing genes with Mendelian inheritance [α-synuclein (SNCA), leucine-rich repeat kinase 2 (LRRK2), PARKIN, PTEN-induced putative kinase 1 (PINK1) and DJ-1 (Daisuke-Junko-1)] and susceptibility genes [glucocerebrosidase beta acid (GBA) and microtubule-associated protein tau (MAPT)] identified through genome-wide association studies (GWAS) in a European-American case-control sample (n=815). RESULTS: Disease-causing variants in the SNCA, LRRK2 and PARK2 genes were found in 2% of PD patients. The LRRK2, p.G2019S mutation was found in 0.6 % of sporadic PD and 4.8 % of familial PD cases. Gene-based analysis suggests that additional variants in the LRRK2 gene also contribute to PD risk. The SNCA duplication was found in 0.8 % of familial PD patients. Novel variants were found in 0.8% of PD cases and 0.6 % of controls. Heterozygous Gaucher disease-causing mutations in the GBA gene were found in 7.1 % of PD patients. Here, we established that the GBA variant (p.T408M) is associated with PD risk and age at onset. Additionally, gene-based and single-variant analyses demostrated that GBA gene variants (p.L483P, p.R83C, p.N409S, p.H294Q and p.E365K) increase PD risk. CONCLUSIONS: Our data suggest that the impact of additional untested coding variants in the GBA and LRRK2 genes is higher than previously estimated. Our data also provide compelling evidence of the existence of additional untested variants in the primary Mendelian and PD GWAS genes that contribute to the genetic etiology of sporadic PD.


Subject(s)
Genetic Predisposition to Disease , Mutation/genetics , Parkinson Disease/genetics , Adult , Age of Onset , Aged , Aged, 80 and over , Female , Genetic Testing , Genome-Wide Association Study , Glucosylceramidase/genetics , Humans , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2 , Male , Middle Aged , Protein Kinases/genetics , Protein Serine-Threonine Kinases/genetics , alpha-Synuclein/genetics
4.
Hum Mol Genet ; 23(21): 5838-46, 2014 Nov 01.
Article in English | MEDLINE | ID: mdl-24899047

ABSTRACT

The triggering receptor expressed on myeloid 2 (TREM2) is an immune phagocytic receptor expressed on brain microglia known to trigger phagocytosis and regulate the inflammatory response. Homozygous mutations in TREM2 cause Nasu-Hakola disease, a rare recessive form of dementia. A heterozygous TREM2 variant, p.R47H, was recently shown to increase Alzheimer''s disease (AD) risk. We hypothesized that if TREM2 is truly an AD risk gene, there would be additional rare variants in TREM2 that substantially affect AD risk. To test this hypothesis, we performed pooled sequencing of TREM2 coding regions in 2082 AD cases and 1648 cognitively normal elderly controls of European American descent. We identified 16 non-synonymous variants, six of which were not identified in previous AD studies. Two variants, p.R47H [P = 9.17 × 10(-4), odds ratio (OR) = 2.63 (1.44-4.81)] and p.R62H [P = 2.36 × 10(-4), OR = 2.36 (1.47-3.80)] were significantly associated with disease risk in single-variant analyses. Gene-based tests demonstrate variants in TREM2 are genome-wide significantly associated with AD [PSKAT-O = 5.37 × 10(-7); OR = 2.55 (1.80-3.67)]. The association of TREM2 variants with AD is still highly significant after excluding p.R47H [PSKAT-O = 7.72 × 10(-5); OR = 2.47 (1.62-3.87)], indicating that additional TREM2 variants affect AD risk. Genotyping in available family members of probands suggested that p.R47H (P = 4.65 × 10(-2)) and p.R62H (P = 6.87 × 10(-3)) were more frequently seen in AD cases versus controls within these families. Gel electrophoresis analysis confirms that at least three TREM2 transcripts are expressed in human brains, including one encoding a soluble form of TREM2.


Subject(s)
Alzheimer Disease/genetics , Genetic Variation , Membrane Glycoproteins/genetics , Open Reading Frames , Receptors, Immunologic/genetics , Adult , Aged , Aged, 80 and over , Alternative Splicing , Alzheimer Disease/diagnosis , Amino Acid Sequence , Brain/metabolism , Brain/pathology , Case-Control Studies , Female , Genetic Association Studies , Genetic Predisposition to Disease , Humans , Male , Membrane Glycoproteins/chemistry , Middle Aged , Molecular Sequence Data , Polymorphism, Single Nucleotide , Receptors, Immunologic/chemistry , Risk , Sequence Alignment
5.
Nature ; 505(7484): 550-554, 2014 Jan 23.
Article in English | MEDLINE | ID: mdl-24336208

ABSTRACT

Genome-wide association studies (GWAS) have identified several risk variants for late-onset Alzheimer's disease (LOAD). These common variants have replicable but small effects on LOAD risk and generally do not have obvious functional effects. Low-frequency coding variants, not detected by GWAS, are predicted to include functional variants with larger effects on risk. To identify low-frequency coding variants with large effects on LOAD risk, we carried out whole-exome sequencing (WES) in 14 large LOAD families and follow-up analyses of the candidate variants in several large LOAD case-control data sets. A rare variant in PLD3 (phospholipase D3; Val232Met) segregated with disease status in two independent families and doubled risk for Alzheimer's disease in seven independent case-control series with a total of more than 11,000 cases and controls of European descent. Gene-based burden analyses in 4,387 cases and controls of European descent and 302 African American cases and controls, with complete sequence data for PLD3, reveal that several variants in this gene increase risk for Alzheimer's disease in both populations. PLD3 is highly expressed in brain regions that are vulnerable to Alzheimer's disease pathology, including hippocampus and cortex, and is expressed at significantly lower levels in neurons from Alzheimer's disease brains compared to control brains. Overexpression of PLD3 leads to a significant decrease in intracellular amyloid-ß precursor protein (APP) and extracellular Aß42 and Aß40 (the 42- and 40-residue isoforms of the amyloid-ß peptide), and knockdown of PLD3 leads to a significant increase in extracellular Aß42 and Aß40. Together, our genetic and functional data indicate that carriers of PLD3 coding variants have a twofold increased risk for LOAD and that PLD3 influences APP processing. This study provides an example of how densely affected families may help to identify rare variants with large effects on risk for disease or other complex traits.


Subject(s)
Alzheimer Disease/genetics , Genetic Predisposition to Disease/genetics , Genetic Variation/genetics , Phospholipase D/genetics , Black or African American/genetics , Age of Onset , Aged , Aged, 80 and over , Alzheimer Disease/metabolism , Amyloid beta-Peptides/metabolism , Amyloid beta-Protein Precursor/metabolism , Brain/metabolism , Case-Control Studies , Europe/ethnology , Exome/genetics , Female , Humans , Male , Peptide Fragments/metabolism , Phospholipase D/deficiency , Phospholipase D/metabolism , Protein Processing, Post-Translational/genetics , Proteolysis
6.
PLoS Genet ; 9(8): e1003685, 2013.
Article in English | MEDLINE | ID: mdl-23990795

ABSTRACT

The primary constituents of plaques (Aß42/Aß40) and neurofibrillary tangles (tau and phosphorylated forms of tau [ptau]) are the current leading diagnostic and prognostic cerebrospinal fluid (CSF) biomarkers for AD. In this study, we performed deep sequencing of APP, PSEN1, PSEN2, GRN, APOE and MAPT genes in individuals with extreme CSF Aß42, tau, or ptau levels. One known pathogenic mutation (PSEN1 p.A426P), four high-risk variants for AD (APOE p.L46P, MAPT p.A152T, PSEN2 p.R62H and p.R71W) and nine novel variants were identified. Surprisingly, a coding variant in PSEN1, p.E318G (rs17125721-G) exhibited a significant association with high CSF tau (p = 9.2 × 10(-4)) and ptau (p = 1.8 × 10(-3)) levels. The association of the p.E318G variant with Aß deposition was observed in APOE-ε4 allele carriers. Furthermore, we found that in a large case-control series (n = 5,161) individuals who are APOE-ε4 carriers and carry the p.E318G variant are at a risk of developing AD (OR = 10.7, 95% CI = 4.7-24.6) that is similar to APOE-ε4 homozygous (OR = 9.9, 95% CI = 7.2.9-13.6), and double the risk for APOE-ε4 carriers that do not carry p.E318G (OR = 3.9, 95% CI = 3.4-4.4). The p.E318G variant is present in 5.3% (n = 30) of the families from a large clinical series of LOAD families (n = 565) and exhibited a higher frequency in familial LOAD (MAF = 2.5%) than in sporadic LOAD (MAF = 1.6%) (p = 0.02). Additionally, we found that in the presence of at least one APOE-ε4 allele, p.E318G is associated with more Aß plaques and faster cognitive decline. We demonstrate that the effect of PSEN1, p.E318G on AD susceptibility is largely dependent on an interaction with APOE-ε4 and mediated by an increased burden of Aß deposition.


Subject(s)
Alzheimer Disease/genetics , Amyloid beta-Peptides/genetics , Apolipoprotein E4/genetics , Presenilin-1/genetics , Adult , Aged , Aged, 80 and over , Alzheimer Disease/pathology , Amyloid beta-Peptides/metabolism , Female , Heterozygote , High-Throughput Nucleotide Sequencing , Humans , Male , Middle Aged , Mutation , tau Proteins/cerebrospinal fluid , tau Proteins/genetics
7.
JAMA Neurol ; 70(6): 736-41, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23588422

ABSTRACT

IMPORTANCE: Hexanucleotide repeat expansions in the chromosome 9 open reading frame 72 (C9orf72) gene underlie a significant fraction of frontotemporal dementia and amyotrophic lateral sclerosis. OBJECTIVE: To investigate the frequency of C9orf72 repeat expansions in clinically diagnosed late-onset Alzheimer disease (AD). DESIGN, SETTING, AND PATIENTS: This case-control study genotyped the C9orf72 repeat expansion in 872 unrelated familial AD cases and 888 control subjects recruited as part of the National Institute on Aging Late-Onset Alzheimer Disease Family Study cohort, a multisite collaboration studying 1000 families with 2 or more individuals clinically diagnosed as having late-onset AD. MAIN OUTCOMES AND MEASURES: We determined the presence or absence of the C9orf72 repeat expansion by repeat-primed polymerase chain reaction, the length of the longest nonexpanded allele, segregation of the genotype with disease, and clinical features of repeat expansion carriers. RESULTS Three families showed large C9orf72 hexanucleotide repeat expansions. Two additional families carried more than 30 repeats. Segregation with disease could be demonstrated in 3 families. One affected expansion carrier had neuropathology compatible with AD. In the National Institute on Aging Late-Onset Alzheimer Disease Family Study series, the C9orf72 repeat expansions constituted the second most common pathogenic mutation, just behind the PSEN1 A79V mutation, highlighting the heterogeneity of clinical presentations associated with repeat expansions. CONCLUSIONS AND RELEVANCE: C9orf72 repeat expansions explain a small proportion of patients with a clinical presentation indistinguishable from AD, and they highlight the necessity of screening frontotemporal dementia genes in clinical AD cases with strong family history.


Subject(s)
Alzheimer Disease/diagnosis , Alzheimer Disease/genetics , DNA Repeat Expansion/genetics , Proteins/genetics , Adult , Aged , Aged, 80 and over , C9orf72 Protein , Case-Control Studies , Cohort Studies , Female , Humans , Male , Middle Aged , Pedigree
8.
Neurobiol Aging ; 34(6): 1711.e15-7, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23391427

ABSTRACT

Two recent studies have reported the association of rs75932628-T in the TREM2 gene with the risk for Alzheimer's disease (AD). Rs75932628-T is a rare nonsynonymous variant (p.R47H) that confers a high risk of AD with an effect size similar to that of the APOE ɛ4 allele. However, this association has not been replicated in any independent studies to date. The allelic frequency of rs75932628 varies according to the population from 0.02% to 0.63% among healthy controls. In an attempt to replicate the association between rs75932628-T and AD risk, we genotyped rs75932628 in a cohort of 504 AD subjects and 550 healthy controls from a Spanish population. Rs75932628-T showed a minor allele frequency of 0.3% among this cohort. Interestingly, in our study, rs75932628-T was found exclusively in 1.4% of AD cases (7/504), including 4 early-onset AD cases, and in none of the controls (n = 0/550). Here, we report the first positive replication study in a Spanish population and confirm that TREM2 rs75932628-T is associated with the risk for AD.


Subject(s)
Alzheimer Disease/diagnosis , Alzheimer Disease/genetics , Genetic Association Studies , Genetic Predisposition to Disease/genetics , Membrane Glycoproteins/genetics , Receptors, Immunologic/genetics , White People/genetics , Adult , Aged , Aged, 80 and over , Alzheimer Disease/ethnology , Female , Genetic Association Studies/methods , Genetic Predisposition to Disease/ethnology , Humans , Male , Middle Aged , Spain/ethnology , White People/ethnology
9.
Neurobiol Aging ; 34(5): 1519.e1-2, 2013 May.
Article in English | MEDLINE | ID: mdl-23116878

ABSTRACT

Hexanucleotide expansions in the C9ORF72 gene are frequently found in patients with amyotrophic lateral sclerosis, frontotemporal dementia or both, some of whom exhibit concurrent extrapyramidal symptoms. To determine if repeat expansions are a cause of Parkinson's disease (PD), we used repeat-primed polymerase chain reaction to investigate the frequency of C9ORF72 repeat expansions in a cohort of 478 patients with PD and 662 control subjects. Three control subjects were found to be expansion carriers, and no expansions were found among patients, suggesting that C9ORF72 expansions are not a common cause of PD.


Subject(s)
DNA Repeat Expansion/genetics , Genetic Markers/genetics , Genetic Predisposition to Disease/epidemiology , Genetic Predisposition to Disease/genetics , Parkinson Disease/epidemiology , Parkinson Disease/genetics , Proteins/genetics , Adult , Aged , Aged, 80 and over , C9orf72 Protein , Female , Genetic Association Studies , Humans , Male , Middle Aged , Missouri/epidemiology , Prevalence , Risk Factors
10.
Exp Eye Res ; 116: 386-394, 2013 11.
Article in English | MEDLINE | ID: mdl-24416769

ABSTRACT

Retinitis Pigmentosa (RP) involves a group of genetically determined retinal diseases caused by a large number of mutations that result in rod photoreceptor cell death followed by gradual death of cone cells. Most cases of RP are monogenic, with more than 80 associated genes identified so far. The high number of genes and variants involved in RP, among other factors, is making the molecular characterization of RP a real challenge for many patients. Although HRM has been used for the analysis of isolated variants or single RP genes, as far as we are concerned, this is the first study that uses HRM analysis for a high-throughput screening of several RP genes. Our main goal was to test the suitability of HRM analysis as a genetic screening technique in RP, and to compare its performance with two of the most widely used NGS platforms, Illumina and PGM-Ion Torrent technologies. RP patients (n = 96) were clinically diagnosed at the Ophthalmology Department of Donostia University Hospital, Spain. We analyzed a total of 16 RP genes that meet the following inclusion criteria: 1) size: genes with transcripts of less than 4 kb; 2) number of exons: genes with up to 22 exons; and 3) prevalence: genes reported to account for, at least, 0.4% of total RP cases worldwide. For comparison purposes, RHO gene was also sequenced with Illumina (GAII; Illumina), Ion semiconductor technologies (PGM; Life Technologies) and Sanger sequencing (ABI 3130xl platform; Applied Biosystems). Detected variants were confirmed in all cases by Sanger sequencing and tested for co-segregation in the family of affected probands. We identified a total of 65 genetic variants, 15 of which (23%) were novel, in 49 out of 96 patients. Among them, 14 (4 novel) are probable disease-causing genetic variants in 7 RP genes, affecting 15 patients. Our HRM analysis-based study, proved to be a cost-effective and rapid method that provides an accurate identification of genetic RP variants. This approach is effective for medium sized (<4 kb transcript) RP genes, which constitute over 80% of the total of known RP genes.


Subject(s)
DNA Mutational Analysis/methods , Eye Proteins/genetics , Genetic Testing/methods , Retinitis Pigmentosa/diagnosis , Adult , DNA/genetics , Eye Proteins/metabolism , Female , Humans , Male , Mutation , Pedigree , Retinitis Pigmentosa/genetics
11.
Alzheimers Res Ther ; 4(4): 34, 2012 Aug 20.
Article in English | MEDLINE | ID: mdl-22906081

ABSTRACT

INTRODUCTION: Some familial Alzheimer's disease (AD) cases are caused by rare and highly-penetrant mutations in APP, PSEN1, and PSEN2. Mutations in GRN and MAPT, two genes associated with frontotemporal dementia (FTD), have been found in clinically diagnosed AD cases. Due to the dramatic developments in next-generation sequencing (NGS), high-throughput sequencing of targeted genomic regions of the human genome in many individuals in a single run is now cheap and feasible. Recent findings favor the rare variant-common disease hypothesis by which the combination effects of rare variants could explain a large proportion of the heritability. We utilized NGS to identify rare and pathogenic variants in APP, PSEN1, PSEN2, GRN, and MAPT in an Ibero-American cohort. METHODS: We performed pooled-DNA sequencing of each exon and flanking sequences in APP, PSEN1, PSEN2, MAPT and GRN in 167 clinical and 5 autopsy-confirmed AD cases (15 familial early-onset, 136 sporadic early-onset and 16 familial late-onset) from Spain and Uruguay using NGS. Follow-up genotyping was used to validate variants. After genotyping additional controls, we performed segregation and functional analyses to determine the pathogenicity of validated variants. RESULTS: We identified a novel G to T transition (g.38816G>T) in exon 6 of PSEN1 in a sporadic early-onset AD case, resulting in a previously described pathogenic p.L173F mutation. A pathogenic p.L392V mutation in exon 11 was found in one familial early-onset AD case. We also identified a novel CC insertion (g.10974_10975insCC) in exon 8 of GRN, which introduced a premature stop codon, resulting in nonsense-mediated mRNA decay. This GRN mutation was associated with lower GRN plasma levels, as previously reported for other GRN pathogenic mutations. We found two variants in MAPT (p.A152T, p.S318L) present only in three AD cases but not controls, suggesting that these variants could be risk factors for the disease. CONCLUSIONS: We found pathogenic mutations in PSEN1, GRN and MAPT in 2.33% of the screened cases. This study suggests that pathogenic mutations or risk variants in MAPT and in GRN are as frequent in clinical AD cases as mutations in APP, PSEN1 and PSEN2, highlighting that pleiotropy of MAPT or GRN mutations can influence both FTD and AD phenotypic traits.

SELECTION OF CITATIONS
SEARCH DETAIL
...