Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
MethodsX ; 8: 101166, 2021.
Article in English | MEDLINE | ID: mdl-33354518

ABSTRACT

The acoustic startle response (ASR) is an involuntary muscle reflex that occurs in response to a transient loud sound and is a highly-utilized method of assessing hearing status in animal models. Currently, a high level of variability exists in the recording and interpretation of ASRs due to the lack of standardization for collecting and analyzing these measures. An ensembled machine learning model was trained to predict whether an ASR waveform is a startle or non-startle using highly-predictive features extracted from normalized ASR waveforms collected from young adult CBA/CaJ mice. Features were extracted from the normalized waveform as well as the power spectral density estimates and continuous wavelet transforms of the normalized waveform. Machine learning models utilizing methods from different families of algorithms were individually trained and then ensembled together, resulting in an extremely robust model.•ASR waveforms were normalized using the mean and standard deviation computed before the startle elicitor was presented•9 machine learning algorithms from 4 different families of algorithms were individually trained using features extracted from the normalized ASR waveforms•Trained machine learning models were ensembled to produce an extremely robust classifier.

2.
J Neurosci Methods ; 344: 108853, 2020 10 01.
Article in English | MEDLINE | ID: mdl-32668315

ABSTRACT

BACKGROUND: The acoustic startle response (ASR) is a simple reflex that results in a whole body motor response after animals hear a brief loud sound and is used as a multisensory tool across many disciplines. Unfortunately, a method of how to record, process, and analyze ASRs has yet to be standardized, leading to high variability in the collection, analysis, and interpretation of ASRs within and between laboratories. NEW METHOD: ASR waveforms collected from young adult CBA/CaJ mice were normalized with features extracted from the waveform, the resulting power spectral density estimates, and the continuous wavelet transforms. The features were then partitioned into training and test/validation sets. Machine learning methods from different families of algorithms were used to combine startle-related features into robust predictive models to predict whether an ASR waveform is a startle or non-startle. RESULTS: An ensemble of several machine learning models resulted in an extremely robust model to predict whether an ASR waveform is a startle or non-startle with a mean ROC of 0.9779, training accuracy of 0.9993, and testing accuracy of 0.9301. COMPARISON WITH EXISTING METHODS: ASR waveforms analyzed using the threshold and RMS techniques resulted in over 80% of accepted startles actually being non-startles when manually classified versus 2.2% for the machine learning method, resulting in statistically significant differences in ASR metrics (such as startle amplitude and pre-pulse inhibition) between classification methods. CONCLUSIONS: The machine learning approach presented in this paper can be adapted to nearly any ASR paradigm to accurately process, sort, and classify startle responses.


Subject(s)
Prepulse Inhibition , Reflex, Startle , Acoustic Stimulation , Animals , Machine Learning , Mice , Mice, Inbred CBA
SELECTION OF CITATIONS
SEARCH DETAIL
...