Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 7(3): e33823, 2012.
Article in English | MEDLINE | ID: mdl-22457791

ABSTRACT

Increased metabolism is a requirement for tumor cell proliferation. To understand the dependence of tumor cells on fatty acid metabolism, we evaluated various nodes of the fatty acid synthesis pathway. Using RNAi we have demonstrated that depletion of fatty-acid synthesis pathway enzymes SCD1, FASN, or ACC1 in HCT116 colon cancer cells results in cytotoxicity that is reversible by addition of exogenous fatty acids. This conditional phenotype is most pronounced when SCD1 is depleted. We used this fatty-acid rescue strategy to characterize several small-molecule inhibitors of fatty acid synthesis, including identification of TOFA as a potent SCD1 inhibitor, representing a previously undescribed activity for this compound. Reference FASN and ACC inhibitors show cytotoxicity that is less pronounced than that of TOFA, and fatty-acid rescue profiles consistent with their proposed enzyme targets. Two reference SCD1 inhibitors show low-nanomolar cytotoxicity that is offset by at least two orders of magnitude by exogenous oleate. One of these inhibitors slows growth of HCT116 xenograft tumors. Our data outline an effective strategy for interrogation of on-mechanism potency and pathway-node-specificity of fatty acid synthesis inhibitors, establish an unambiguous link between fatty acid synthesis and cancer cell survival, and point toward SCD1 as a key target in this pathway.


Subject(s)
Apoptosis/physiology , Fatty Acids, Monounsaturated/metabolism , Neoplasms/pathology , Stearoyl-CoA Desaturase/antagonists & inhibitors , Cell Line, Tumor , Humans , Stearoyl-CoA Desaturase/physiology
2.
Mol Genet Metab ; 105(4): 621-8, 2012 Apr.
Article in English | MEDLINE | ID: mdl-22366055

ABSTRACT

Niemann Pick type C (NPC) disease is a progressive neurodegenerative disease caused by mutations in NPC1 or NPC2, the gene products of which are involved in cholesterol transport in late endosomes. NPC is characterized by an accumulation of cholesterol, sphingomyelin and glycosphingolipids in the visceral organs, primarily the liver and spleen. In the brain, there is a redistribution of unesterified cholesterol and a concomitant accumulation of glycosphingolipids. It has been suggested that reducing the aberrant lysosomal storage of glycosphingolipids in the brain by a substrate reduction therapy (SRT) approach may prove beneficial. Inhibiting glucosylceramide synthase (GCS) using the iminosugar-based inhibitor miglustat (NB-DNJ) has been reported to increase the survival of NPC mice. Here, we tested the effects of Genz-529468, a more potent iminosugar-based inhibitor of GCS, in the NPC mouse. Oral administration of Genz-529468 or NB-DNJ to NPC mice improved their motor function, reduced CNS inflammation, and increased their longevity. However, Genz-529468 offered a wider therapeutic window and better therapeutic index than NB-DNJ. Analysis of the glycolipids in the CNS of the iminosugar-treated NPC mouse revealed that the glucosylceramide (GL1) but not the ganglioside levels were highly elevated. This increase in GL1 was likely caused by the off-target inhibition of the murine non-lysosomal glucosylceramidase, Gba2. Hence, the basis for the observed effects of these inhibitors in NPC mice might be related to their inhibition of Gba2 or another unintended target rather than a result of substrate reduction.


Subject(s)
Brain/metabolism , Enzyme Inhibitors/therapeutic use , Glucosyltransferases/antagonists & inhibitors , Imino Sugars/therapeutic use , Niemann-Pick Disease, Type C/drug therapy , Niemann-Pick Disease, Type C/mortality , Animals , Brain/cytology , Brain/drug effects , Disease Models, Animal , Drug Synergism , Glucosylceramides/metabolism , Glycosphingolipids/metabolism , Liver/cytology , Liver/drug effects , Liver/metabolism , Mice , Mice, Inbred BALB C , Mice, Knockout , Niemann-Pick Disease, Type C/enzymology , Survival Rate
3.
PLoS One ; 6(6): e21758, 2011.
Article in English | MEDLINE | ID: mdl-21738789

ABSTRACT

The neuropathic glycosphingolipidoses are a subgroup of lysosomal storage disorders for which there are no effective therapies. A potential approach is substrate reduction therapy using inhibitors of glucosylceramide synthase (GCS) to decrease the synthesis of glucosylceramide and related glycosphingolipids that accumulate in the lysosomes. Genz-529468, a blood-brain barrier-permeant iminosugar-based GCS inhibitor, was used to evaluate this concept in a mouse model of Sandhoff disease, which accumulates the glycosphingolipid GM2 in the visceral organs and CNS. As expected, oral administration of the drug inhibited hepatic GM2 accumulation. Paradoxically, in the brain, treatment resulted in a slight increase in GM2 levels and a 20-fold increase in glucosylceramide levels. The increase in brain glucosylceramide levels might be due to concurrent inhibition of the non-lysosomal glucosylceramidase, Gba2. Similar results were observed with NB-DNJ, another iminosugar-based GCS inhibitor. Despite these unanticipated increases in glycosphingolipids in the CNS, treatment nevertheless delayed the loss of motor function and coordination and extended the lifespan of the Sandhoff mice. These results suggest that the CNS benefits observed in the Sandhoff mice might not necessarily be due to substrate reduction therapy but rather to off-target effects.


Subject(s)
Brain/drug effects , Brain/metabolism , Enzyme Inhibitors/therapeutic use , Glucosyltransferases/antagonists & inhibitors , Glycosphingolipids/metabolism , Imino Sugars/chemistry , Sandhoff Disease/drug therapy , Sandhoff Disease/metabolism , Animals , Enzyme Inhibitors/chemistry , Immunohistochemistry , Mice
4.
Mol Genet Metab ; 100(4): 309-15, 2010 Aug.
Article in English | MEDLINE | ID: mdl-20554235

ABSTRACT

Pompe disease, also known as glycogen storage disease (GSD) type II, is caused by deficiency of lysosomal acid alpha-glucosidase (GAA). The resulting glycogen accumulation causes a spectrum of disease severity ranging from a rapidly progressive course that is typically fatal by 1-2years of age to a more slowly progressive course that causes significant morbidity and early mortality in children and adults. Recombinant human GAA (rhGAA) improves clinical outcomes with variable results. Adjunct therapy that increases the effectiveness of rhGAA may benefit some Pompe patients. Co-administration of the mTORC1 inhibitor rapamycin with rhGAA in a GAA knockout mouse reduced muscle glycogen content more than rhGAA or rapamycin alone. These results suggest mTORC1 inhibition may benefit GSDs that involve glycogen accumulation in muscle.


Subject(s)
Glycogen Storage Disease Type II/therapy , Glycogen/biosynthesis , Transcription Factors/antagonists & inhibitors , Aging/drug effects , Aging/pathology , Animals , Dose-Response Relationship, Drug , Enzyme Replacement Therapy , Glycogen Storage Disease Type II/drug therapy , Glycogen Storage Disease Type II/enzymology , Glycogen Synthase/metabolism , Humans , Mechanistic Target of Rapamycin Complex 1 , Mice , Multiprotein Complexes , Muscle, Skeletal/drug effects , Muscle, Skeletal/enzymology , Muscle, Skeletal/pathology , Myocardium/metabolism , Myocardium/pathology , Phosphorylation/drug effects , Proteins , Recombinant Proteins/therapeutic use , Sirolimus/analogs & derivatives , Sirolimus/pharmacology , TOR Serine-Threonine Kinases , Transcription Factors/metabolism , alpha-Glucosidases/metabolism , alpha-Glucosidases/therapeutic use
5.
Magn Reson Chem ; 46(10): 955-61, 2008 Oct.
Article in English | MEDLINE | ID: mdl-18698668

ABSTRACT

A bicyclic peptide, cyclo (L-Glu(1)-D-Leu(2)-Aib(3)-L-Lys(4)-D-Leu(5)-D-Ala(6))-cyclo-(1gamma-4epsilon) (I), was designed and synthesized to provide an ammonium ion complexation site in a tetrahedral geometry. Molecular modeling, dynamics and electrostatic studies for I indicated that it exhibits some selectivity for ammonium ions over potassium and sodium ions. NMR measurements in CDCl(3)/CD(3)OD (1:1) show that for those carbonyl groups involved in cation binding, (13)C resonances shifted downfield with increasing cation concentration. The resonance that exhibited the largest change in chemical shift between uncomplexed and complexed forms was used to determine the selectivity. Selectivity values obtained were logK(NH(4) (+), Na(+) ) = - 2.4 and logK(NH(4) (+), K(+) ) = - 0.6.


Subject(s)
Magnetic Resonance Spectroscopy/methods , Peptides, Cyclic/chemistry , Quaternary Ammonium Compounds/chemistry , Carbon Isotopes , Computer Simulation , Ions/chemistry , Magnetic Resonance Spectroscopy/standards , Models, Chemical , Models, Molecular , Molecular Conformation , Peptides, Cyclic/chemical synthesis , Potassium/chemistry , Reference Standards , Reproducibility of Results , Sensitivity and Specificity , Sodium/chemistry , Solubility , Static Electricity
6.
Langmuir ; 24(9): 5140-5, 2008 May 06.
Article in English | MEDLINE | ID: mdl-18393555

ABSTRACT

Multilayered photocurrent generating thin films were fabricated by templated noncovalent assembly via stepwise assembly of molecular components. Each of films I-IV contained an underlying self-assembled monolayer (SAM) consisting of an alkanethiol linked covalently to a 2,6-dicarboxypyridine ligand that served as a binding site for attaching additional molecular components. The SAM subsequently was functionalized by sequential deposition of Cu(II), Co(II), or Fe(III) ions followed by a variety of substituted 2,6-dicarboxypyridine ligands as a means to incorporate one or more layers of pyrene chromophores into the film. The films were characterized by contact angle measurements, ellipsometry, grazing incidence IR, cyclic voltammetry, and impedance spectroscopy after deposition of each layer, confirming the formation of ordered, stable layers. Following incorporation into a three-electrode system, photoexcitation resulted in the generation of a cathodic photocurrent in the presence of methyl viologen and an anodic photocurrent in the presence of triethanolamine. Using this strategy, systems were fabricated that produced up to 89 nA/cm(2) of reproducible photocurrent.

7.
J Am Chem Soc ; 126(4): 1032-3, 2004 Feb 04.
Article in English | MEDLINE | ID: mdl-14746466

ABSTRACT

A noncovalently bound multilayered thin film in which individual layers are linked by metal ligand interactions undergoes a photochemically initiated permanent change in surface wettability. The film consists of three separate layers: a SAM on gold of 4-[(10-mercaptodecyl)oxy]pyridine-2,6-dicarboxylic acid, a layer of Cu(II) ions that are deposited onto the SAM and bind symmetrically in the site provided by the two carboxylate groups and the pyridyl nitrogen atom, and a layer of cis-2,2'-dipyridylethylene, which caps the Cu(II) layer by complexation through both pyridyl nitrogen atoms (Film I). Photoexcitation of the film in chloroform at 300 nm leads to substantial cis-trans isomerization as indicated by conductivity, impedance, grazing incidence IR, and contact angle measurements. The latter show a decrease in contact angle (increase in wettability) of 17 degrees , which is attributed to exposure of both the underlying Cu(II) layer and one of the pyridyl ring nitrogen atoms following isomerization to the trans isomer.

8.
J Am Chem Soc ; 125(10): 2838-9, 2003 Mar 12.
Article in English | MEDLINE | ID: mdl-12617626

ABSTRACT

Three photocurrent-generating thin films were assembled on gold surfaces. SAM I was constructed from molecules consisting of an alkyl disulfide group linked covalently to a 12-residue helical peptide and terminated with an alanine residue containing a pyrene chromophore. SAM I served as a benchmark for multilayered films II and III in photocurrent generation experiments. Films II and III were assembled from several components that were linked noncovalently by metal-ligand complexation. Cyclic voltammetry and contact angle measurements suggest that the films consist of ordered layers with relatively few defects. Photoexcitation of SAM I by the output of a 350 nm lamp ( approximately 0.2 mW power incident on the sample) results in current generation in the range 5-10 nA/cm2. Photoexcitation of II and III yields higher current in the range 10-30 nA/cm2, representing a quantum efficiency of approximately 1%. The observation of comparable or higher current from noncovalently assembled multicomponent films indicates that this method of assembly may obviate the problems associated with the covalent assembly of devices from large molecules.

SELECTION OF CITATIONS
SEARCH DETAIL
...