Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Chemosphere ; 236: 124329, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31310967

ABSTRACT

Plastic pipes have been and are being installed downstream of metal drinking water plumbing components. Prior research has suggested that such pipe configurations may induce plastic pipe degradation and even system failure. To explore the impact of upstream metal plumbing components on downstream plastic pipes, field- and bench-scale experiments were conducted. Six month old galvanized iron pipes (GIPs) and downstream crosslinked polyethylene (PEX) pipes were exhumed from a residential home. Calcium, iron, manganese, phosphorous, and zinc were the most abundant elements on both GIPs and PEX pipes. Black and yellow deposits were found on some of the exhumed PEX pipe inner walls, which were mainly copper, iron, and manganese oxides (CuO, Cu(OH)2, Fe2O3, FeOOH and MnO2). Follow-up bench-scale experiments revealed that metal levels in the drinking water did not always predict metal loadings on plastic pipe surfaces. The pH 4 water resulted in a greater amount of metals released into the bulk water, but the pH 7.5 water resulted in a greater amount of metals deposited on the PEX pipe surfaces. Hot water (55 °C) induced a greater amount of organics released and higher metal loadings on PEX pipe surfaces at pH 7.5. ATR-FTIR analysis showed that at 55 °C, PEX pipes connected to copper and brass components had the greatest oxidation functional group peak intensity (COOC, CO, and COC). This study highlights potential downstream plastic pipe degradation and metal deposition, which may cause plumbing problems and failures for building owners, inhabitants, and water utilities.


Subject(s)
Drinking Water/chemistry , Metals/chemistry , Sanitary Engineering/methods , Corrosion , Water Supply/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...