Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Adv Sci (Weinh) ; 9(10): e2103827, 2022 04.
Article in English | MEDLINE | ID: mdl-35137562

ABSTRACT

Parkinson's disease (PD) evolves over an extended and variable period in humans; years prior to the onset of classical motor symptoms, sleep and biological rhythm disorders develop, significantly impacting the quality-of-life of patients. Circadian-rhythm disorders are accompanied by mild cognitive deficits that progressively worsen with disease progression and can constitute a severe burden for patients at later stages. The gold-standard 6-methyl-1-methyl-4-phenyl-1,2,3,6-tetrahydropyridin (MPTP) macaque model of PD recapitulates the progression of motor and nonmotor symptoms over contracted periods of time. Here, this multidisciplinary/multiparametric study follows, in five animals, the steady progression of motor and nonmotor symptoms and describes their reversal following grafts of neural precursors in diverse functional domains of the basal ganglia. Results show unprecedented recovery from cognitive symptoms in addition to a strong clinical motor recuperation. Both motor and cognitive recovery and partial circadian rhythm recovery correlate with the degree of graft integration, and in a subset of animals, with in vivo levels of striatal dopaminergic innervation and function. The present study provides empirical evidence that integration of neural precursors following transplantation efficiently restores function at multiple levels in parkinsonian nonhuman primates and, given interindividuality of disease progression and recovery, underlines the importance of longitudinal multidisciplinary assessments in view of clinical translation.


Subject(s)
Cognitive Dysfunction , Parkinson Disease , Animals , Cognitive Dysfunction/etiology , Dopamine , Humans , Longitudinal Studies , Macaca
2.
J Comp Neurol ; 464(2): 159-71, 2003 Sep 15.
Article in English | MEDLINE | ID: mdl-12898609

ABSTRACT

The present study describes by means of immunohistochemistry the comparative distribution of glial fibrillary acidic protein (GFAP)-positive cells in the forebrain and midbrain of three species of lizards: Eumeces algeriensis, Scincoidae; Agama impalearis, Agamidae; Tarentola mauritanica, Gekkonidae. In the species studied, the different types and proportions of glial cells expressing GFAP showed considerable variation. These cells include radial glia, oval cells, tanycytes, ependymocytes, glia limitans, and astrocytes. In Eumeces, astrocytes are particularly abundant and their processes form numerous perivascular end-feet; in addition well-differentiated ependymal cells and glia limitans express GFAP. These mature glial features are concordant with the relatively advanced phylogenetic level of Eumeces. In Tarentola, relatively few GFAP-expressing glial cells are observed, consisting mainly of radial glia and tanycytes. These features indicate a relatively immature state of the glial cell populations in this species. In Agama, GFAP-immunostained cells are confined to the periventricular and subpial brain areas; the ventricular lining contains numerous GFAP-immunopositive tanycytes and well-differentiated glia limitans. This pattern indicates that the glial cell profile in Agama exhibits characteristics intermediate between Eumeces and Tarentola, a feature which is discordant with the relatively primitive phylogenetic level of Agamidae compared to Gekkonidae. Together, the results of the present study provide novel data on the characterization of GFAP-expressing cell populations in different species of lizards. We suggest that the different glial patterns observed in the lizard brain correlates with developmental and functional aspects.


Subject(s)
Glial Fibrillary Acidic Protein/metabolism , Lizards/metabolism , Mesencephalon/metabolism , Neuroglia/metabolism , Prosencephalon/metabolism , Animals , Brain Mapping , Ependyma/cytology , Ependyma/metabolism , Immunohistochemistry , Lizards/anatomy & histology , Mesencephalon/cytology , Prosencephalon/cytology , Tissue Distribution
SELECTION OF CITATIONS
SEARCH DETAIL
...