Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
J Appl Crystallogr ; 56(Pt 1): 12-17, 2023 Feb 01.
Article in English | MEDLINE | ID: mdl-36777146

ABSTRACT

As a result of the availability of modern software and hardware, Bayesian analysis is becoming more popular in neutron and X-ray reflectometry analysis. The understandability and replicability of these analyses may be harmed by inconsistencies in how the probability distributions central to Bayesian methods are represented in the literature. Herein advice is provided on how to report the results of Bayesian analysis as applied to neutron and X-ray reflectometry. This includes the clear reporting of initial starting conditions, the prior probabilities, the results of any analysis and the posterior probabilities that are the Bayesian equivalent of the error bar, to enable replicability and improve understanding. It is believed that this advice, grounded in the authors' experience working in the field, will enable greater analytical reproducibility in the work of the reflectometry community, and improve the quality and usability of results.

2.
J Appl Crystallogr ; 55(Pt 4): 769-781, 2022 Aug 01.
Article in English | MEDLINE | ID: mdl-35974737

ABSTRACT

Using the Fisher information (FI), the design of neutron reflectometry experiments can be optimized, leading to greater confidence in parameters of interest and better use of experimental time [Durant, Wilkins, Butler & Cooper (2021). J. Appl. Cryst. 54, 1100-1110]. In this work, the FI is utilized in optimizing the design of a wide range of reflectometry experiments. Two lipid bilayer systems are investigated to determine the optimal choice of measurement angles and liquid contrasts, in addition to the ratio of the total counting time that should be spent measuring each condition. The reduction in parameter uncertainties with the addition of underlayers to these systems is then quantified, using the FI, and validated through the use of experiment simulation and Bayesian sampling methods. For a 'one-shot' measurement of a degrading lipid monolayer, it is shown that the common practice of measuring null-reflecting water is indeed optimal, but that the optimal measurement angle is dependent on the deuteration state of the monolayer. Finally, the framework is used to demonstrate the feasibility of measuring magnetic signals as small as 0.01 µB per atom in layers only 20 Šthick, given the appropriate experimental design, and that the time to reach a given level of confidence in the small magnetic moment is quantifiable.

3.
J Appl Crystallogr ; 54(Pt 4): 1100-1110, 2021 Aug 01.
Article in English | MEDLINE | ID: mdl-34429721

ABSTRACT

An approach based on the Fisher information (FI) is developed to quantify the maximum information gain and optimal experimental design in neutron reflectometry experiments. In these experiments, the FI can be calculated analytically and used to provide sub-second predictions of parameter uncertainties. This approach can be used to influence real-time decisions about measurement angle, measurement time, contrast choice and other experimental conditions based on parameters of interest. The FI provides a lower bound on parameter estimation uncertainties, and these are shown to decrease with the square root of the measurement time, providing useful information for the planning and scheduling of experimental work. As the FI is computationally inexpensive to calculate, it can be computed repeatedly during the course of an experiment, saving costly beam time by signalling that sufficient data have been obtained or saving experimental data sets by signalling that an experiment needs to continue. The approach's predictions are validated through the introduction of an experiment simulation framework that incorporates instrument-specific incident flux profiles, and through the investigation of measuring the structural properties of a phospholipid bilayer.

4.
Langmuir ; 37(5): 1970-1982, 2021 Feb 09.
Article in English | MEDLINE | ID: mdl-33492974

ABSTRACT

The nature of an interfacial structure buried within a device assembly is often critical to its function. For example, the dye/TiO2 interfacial structure that comprises the working electrode of a dye-sensitized solar cell (DSC) governs its photovoltaic output. These structures have been determined outside of the DSC device, using ex situ characterization methods; yet, they really should be probed while held within a DSC since they are modulated by the device environment. Dye/TiO2 structures will be particularly influenced by a layer of electrolyte ions that lies above the dye self-assembly. We show that electrolyte/dye/TiO2 interfacial structures can be resolved using in situ neutron reflectometry with contrast matching. We find that electrolyte constituents ingress into the self-assembled monolayer of dye molecules that anchor onto TiO2. Some dye/TiO2 anchoring configurations are modulated by the formation of electrolyte/dye intermolecular interactions. These electrolyte-influencing structural changes will affect dye-regeneration and electron-injection DSC operational processes. This underpins the importance of this in situ structural determination of electrolyte/dye/TiO2 interfaces within representative DSC device environments.

6.
Langmuir ; 36(17): 4795-4807, 2020 May 05.
Article in English | MEDLINE | ID: mdl-32271588

ABSTRACT

The vertical depth distributions of amine oxide surfactants, N,N-dimethyldodecyl amine N-oxide (DDAO) and N,N-dimethyltetradecyl amine N-oxide (DTAO), in poly(vinyl alcohol) (PVA) films were explored using neutron reflectometry (NR). In both binary and plasticized films, the two deuterated surfactants formed a single monolayer on the film surface with the remaining surfactant homogeneously distributed throughout the bulk of the film. Small-angle neutron scattering and mechanical testing revealed that these surfactants acted like plasticizers in the bulk, occupying the amorphous regions of PVA and reducing its glass-transition temperature. NR revealed little impact of plasticizer (glycerol) incorporation on the behavior of these surfactants in PVA. The surfactant molecular area in the segregated monolayer was smaller for DTAO than for DDAO, indicating that the larger molecule was more densely packed at the surface. Surface tension was used to assess the solution behavior of these surfactants and the effect of glycerol incorporation. Determination of molecular area of each surfactant on the solution surface revealed that the structures of the surface monolayers are remarkably consistent when water is placed by the solid PVA. Incorporation of glycerol caused a decrease of molecular area for DDAO and increase in molecular area for DTAO both in solution and in PVA. This suggests that the head group interactions, which normally limit the minimum area per adsorbed molecule, are modified by the length of the alkyl tail.

7.
J Colloid Interface Sci ; 562: 322-332, 2020 Mar 07.
Article in English | MEDLINE | ID: mdl-31855795

ABSTRACT

In the present study, lipid membrane interactions of anionic poly(ethyl acrylate-co-methacrylic acid) (MAA) microgels as carriers for the cationic antimicrobial peptide LL-37 (LLGDFFRKSKEKIGKEFKRIVQRIKDFLRNLVPRTES) were investigated. In doing so, neutron reflectometry (NR), Fourier-transform infrared spectroscopy with attenuated total reflection (FTIR-ATR), zeta potential, ellipsometry, and circular dichroism spectroscopy (CD) experiments were employed to investigate the relative importance of membrane interactions of peptide-loaded microgel particles and of released peptide. For the free peptide, NR results showed membrane binding occurring preferentially in the tail region in a concentration-dependent manner. At low peptide concentration (0.3 µM) only peptide insertion in the outer leaflet was seen, however, pronounced membrane defects and peptide present in both leaflets was observed at higher peptide concentration (5.0 µM). LL-37 loaded into MAA microgels qualitatively mirrored these effects regarding both peptide localization within the membrane and concentration-dependent defect formation. In addition, very limited membrane binding of microgel particles was observed, in agreement with FTIR-ATR and liposome leakage results. FTIR-ATR showed LL-37 to undergo α-helix formation on membrane insertion, also supported by CD results, the kinetics of which was substantially reduced for microgel-loaded LL-37 due to sustained peptide release. Together, these findings demonstrate that membrane interactions for microgel-loaded LL-37 are dominated by released peptide, but also that slow release of microgel-loaded LL-37 translates into kinetic effects on peptide-membrane interactions, relating to both peptide localization within the bilayer, and to bilayer structure.


Subject(s)
Antimicrobial Cationic Peptides/chemistry , Dimyristoylphosphatidylcholine/chemistry , Liposomes/chemistry , Phosphatidylglycerols/chemistry , Gels , Cathelicidins
8.
Langmuir ; 35(42): 13735-13744, 2019 10 22.
Article in English | MEDLINE | ID: mdl-31553881

ABSTRACT

We present a reliable method for the fabrication of fluid phase, unsaturated lipid bilayers by self-assembly onto charged Self-Assembled Monolayer (SAM) surfaces with tunable membrane to surface aqueous interlayers. Initially, the formation of water interlayers between membranes and charged surfaces was characterized using a comparative series of bilayers deposited onto charged, self-assembled monolayers by sequential layer deposition. Using neutron reflectometry, a bilayer to surface water interlayer of ∼8 Å was found between the zwitterionic phospholipid 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) membrane and an anionic carboxyl terminated grafted SAM with the formation of this layer attributed to bilayer repulsion by hydration water on the SAM surface. Furthermore, we found we could significantly reduce the technical complexity of sample fabrication through self-assembly of planar membranes onto the SAM coated surfaces. Vesicle fusion onto carboxyl-terminated monolayers yielded high coverage (>95%) bilayers of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) which floated on a 7-11 Å solution interlayer between the membrane and the surface. The surface to membrane distance was then tuned via the addition of 200 mM NaCl to the bulk solution immersing a POPC floating membrane, which caused the water interlayer to swell reversibly to ∼33 Å. This study reveals that biomimetic membrane models can be readily self-assembled from solution onto functionalized surfaces without the use of polymer supports or tethers. Once assembled, surface to membrane distance can be tailored to the experimental requirements using physiological concentrations of electrolytes. These planar bilayers only very weakly interact with the substrate and are ideally suited for use as biomimetic models for accurate in vitro biochemical and biophysical studies, as well as for technological applications, such as biosensors.

9.
Angew Chem Int Ed Engl ; 58(43): 15401-15406, 2019 Oct 21.
Article in English | MEDLINE | ID: mdl-31433102

ABSTRACT

We report the precise postsynthetic control of the composition of ß-Fe1+x Se by electrochemistry with simultaneous tracking of the associated structural changes via in situ synchrotron X-ray diffraction. We access the full phase width of 0.01

10.
ACS Appl Mater Interfaces ; 11(14): 13803-13811, 2019 Apr 10.
Article in English | MEDLINE | ID: mdl-30880381

ABSTRACT

Doping poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) is known to improve its conductivity; however, little is known about the thin-film structure of PEDOT:PSS when doped with an asymmetrically charged dopant. In this study, PEDOT:PSS was doped with different concentrations of the zwitterion 3-( N, N dimethylmyristylammonio)propanesulfonate (DYMAP), and its effect on the bulk structure of the films was characterized by neutron reflectivity. The results show that at a low doping concentration, the film separates into a quasi-bilayer structure with lower roughness (10%), increased thickness (18%), and lower electrical conductivity compared to the undoped sample. However, when the doping concentration increases, the film forms into a homogeneous layer and experiences an enhanced conductivity by more than an order of magnitude, a 20% smoother surface, and a 60% thickness increase relative to the pristine sample. Atomic force microscopy (AFM) and profilometry measurements confirmed these findings, and the AFM height and phase images showed the gradually increasing presence of DYMAP on the film surface as a function of the concentration. Neutron reflectivity also showed that the quasi-bilayer structure of the lowest concentration-doped PEDOT:PSS is separated by a graded rather than a well-defined interface. Our findings provide an understanding of the layer structure modification for doped PEDOT:PSS films which should prove important for device applications.

11.
Sci Rep ; 7: 44269, 2017 03 13.
Article in English | MEDLINE | ID: mdl-28287164

ABSTRACT

We demonstrate that the inclusion of a small amount of the co-solvent 1,8-diiodooctane in the preparation of a bulk-heterojunction photovoltaic device increases its power conversion efficiency by 20%, through a mechanism of transient plasticisation. We follow the removal of 1,8-diiodooctane directly after spin-coating using ellipsometry and ion beam analysis, while using small angle neutron scattering to characterise the morphological nanostructure evolution of the film. In PffBT4T-2OD/PC71BM devices, the power conversion efficiency increases from 7.2% to above 8.7% as a result of the coarsening of the phase domains. This coarsening process is assisted by thermal annealing and the slow evaporation of 1,8-diiodooctane, which we suggest, acts as a plasticiser to promote molecular mobility. Our results show that 1,8-diiodooctane can be completely removed from the film by a thermal annealing process at temperatures ≤100 °C and that there is an interplay between the evaporation rate of 1,8-diiodooctane and the rate of domain coarsening in the plasticized film which helps elucidate the mechanism by which additives improve device efficiency.

SELECTION OF CITATIONS
SEARCH DETAIL
...