Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Clin Oncol ; 40(4): 345-355, 2022 02 01.
Article in English | MEDLINE | ID: mdl-34910554

ABSTRACT

PURPOSE: Patients with triple-negative breast cancer (TNBC) with residual disease after neoadjuvant chemotherapy (NAC) have high risk of recurrence with prior data suggesting improved outcomes with capecitabine. Targeted agents have demonstrated activity across multiple cancer types. BRE12-158 was a phase II, multicenter trial that randomly allocated patients with TNBC with residual disease after NAC to genomically directed therapy versus treatment of physician choice (TPC). PATIENTS AND METHODS: From March 2014 to December 2018, 193 patients were enrolled. Residual tumors were sequenced using a next-generation sequencing test. A molecular tumor board adjudicated all results. Patients were randomly allocated to four cycles of genomically directed therapy (arm A) versus TPC (arm B). Patients without a target were assigned to arm B. Primary end point was 2-year disease-free survival (DFS) among randomly assigned patients. Secondary/exploratory end points included distant disease-free survival, overall survival, toxicity assessment, time-based evolution of therapy, and drug-specific outcomes. RESULTS: One hundred ninety-three patients were randomly allocated or were assigned to arm B. The estimated 2-year DFS for the randomized population only was 56.6% (95% CI, 0.45 to 0.70) for arm A versus 62.4% (95% CI, 0.52 to 0.75) for arm B. No difference was seen in DFS, distant disease-free survival, or overall survival for the entire or randomized populations. There was increased uptake of capecitabine for TPC over time. Patients randomly allocated later had less distant recurrences. Circulating tumor DNA status remained a significant predictor of outcome with some patients demonstrating clearance with postneoadjuvant therapy. CONCLUSION: Genomically directed therapy was not superior to TPC for patients with residual TNBC after NAC. Capecitabine should remain the standard of care; however, the activity of other agents in this setting provides rationale for testing optimal combinations to improve outcomes. Circulating tumor DNA should be considered a standard covariate for trials in this setting.


Subject(s)
Antimetabolites, Antineoplastic/therapeutic use , Biomarkers, Tumor/genetics , Capecitabine/therapeutic use , Circulating Tumor DNA/genetics , Neoadjuvant Therapy , Precision Medicine , Triple Negative Breast Neoplasms/drug therapy , Adult , Aged , Antimetabolites, Antineoplastic/adverse effects , Capecitabine/adverse effects , Clinical Decision-Making , Disease-Free Survival , Female , High-Throughput Nucleotide Sequencing , Humans , Middle Aged , Neoadjuvant Therapy/adverse effects , Neoplasm, Residual , Patient Selection , Predictive Value of Tests , Time Factors , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/mortality , Triple Negative Breast Neoplasms/pathology
2.
JAMA Oncol ; 6(9): 1410-1415, 2020 09 01.
Article in English | MEDLINE | ID: mdl-32644110

ABSTRACT

Importance: A significant proportion of patients with early-stage triple-negative breast cancer (TNBC) are treated with neoadjuvant chemotherapy. Sequencing of circulating tumor DNA (ctDNA) after surgery, along with enumeration of circulating tumor cells (CTCs), may be used to detect minimal residual disease and assess which patients may experience disease recurrence. Objective: To determine whether the presence of ctDNA and CTCs after neoadjuvant chemotherapy in patients with early-stage TNBC is independently associated with recurrence and clinical outcomes. Design, Setting, and Participants: A preplanned secondary analysis was conducted from March 26, 2014, to December 18, 2018, using data from 196 female patients in BRE12-158, a phase 2 multicenter randomized clinical trial that randomized patients with early-stage TNBC who had residual disease after neoadjuvant chemotherapy to receive postneoadjuvant genomically directed therapy vs treatment of physician choice. Patients had blood samples collected for ctDNA and CTCs at time of treatment assignment; ctDNA analysis with survival was performed for 142 patients, and CTC analysis with survival was performed for 123 patients. Median clinical follow-up was 17.2 months (range, 0.3-58.3 months). Interventions: Circulating tumor DNA was sequenced using the FoundationACT or FoundationOneLiquid Assay, and CTCs were enumerated using an epithelial cell adhesion molecule-based, positive-selection microfluidic device. Main Outcomes and Measures: Primary outcomes were distant disease-free survival (DDFS), disease-free survival (DFS), and overall survival (OS). Results: Among 196 female patients (mean [SD] age, 49.6 [11.1] years), detection of ctDNA was significantly associated with inferior DDFS (median DDFS, 32.5 months vs not reached; hazard ratio [HR], 2.99; 95% CI, 1.38-6.48; P = .006). At 24 months, DDFS probability was 56% for ctDNA-positive patients compared with 81% for ctDNA-negative patients. Detection of ctDNA was similarly associated with inferior DFS (HR, 2.67; 95% CI, 1.28-5.57; P = .009) and inferior OS (HR, 4.16; 95% CI,1.66-10.42; P = .002). The combination of ctDNA and CTCs provided additional information for increased sensitivity and discriminatory capacity. Patients who were ctDNA positive and CTC positive had significantly inferior DDFS compared with those who were ctDNA negative and CTC negative (median DDFS, 32.5 months vs not reached; HR, 5.29; 95% CI, 1.50-18.62; P = .009). At 24 months, DDFS probability was 52% for patients who were ctDNA positive and CTC positive compared with 89% for those who were ctDNA negative and CTC negative. Similar trends were observed for DFS (HR, 3.15; 95% CI, 1.07-9.27; P = .04) and OS (HR, 8.60; 95% CI, 1.78-41.47; P = .007). Conclusions and Relevance: In this preplanned secondary analysis of a randomized clinical trial, detection of ctDNA and CTCs in patients with early-stage TNBC after neoadjuvant chemotherapy was independently associated with disease recurrence, which represents an important stratification factor for future postneoadjuvant trials. Trial Registration: ClinicalTrials.gov Identifier: NCT02101385.


Subject(s)
Circulating Tumor DNA/genetics , Neoplasm Recurrence, Local/drug therapy , Neoplastic Cells, Circulating/drug effects , Triple Negative Breast Neoplasms/drug therapy , Adolescent , Adult , Circulating Tumor DNA/drug effects , Disease-Free Survival , Female , Humans , Middle Aged , Neoadjuvant Therapy , Neoplasm Recurrence, Local/genetics , Neoplasm Recurrence, Local/pathology , Neoplasm Staging , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/pathology , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...