Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Alzheimers Dement ; 20(1): 288-300, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37603693

ABSTRACT

INTRODUCTION: Olfactory decline is associated with cognitive decline in aging, amnestic mild cognitive impairment (aMCI), and amnestic dementia associated with Alzheimer's disease neuropathology (ADd). The National Institutes of Health Toolbox Odor Identification Test (NIHTB-OIT) may distinguish between these clinical categories. METHODS: We compared NIHTB-OIT scores across normal cognition (NC), aMCI, and ADd participants (N = 389, ≥65 years) and between participants positive versus negative for AD biomarkers and the APOE ε4 allele. RESULTS: NIHTB-OIT scores decreased with age (p < 0.001) and were lower for aMCI (p < 0.001) and ADd (p < 0.001) compared to NC participants, correcting for age and sex. The NIHTB-OIT detects aMCI (ADd) versus NC participants with 49.4% (56.5%) sensitivity and 88.8% (89.5%) specificity. NIHTB-OIT scores were lower for participants with positive AD biomarkers (p < 0.005), but did not differ based on the APOE ε4 allele (p > 0.05). DISCUSSION: The NIHTB-OIT distinguishes clinically aMCI and ADd participants from NC participants. HIGHLIGHTS: National Institutes of Health Toolbox Odor Identification Test (NIHTB-OIT) discriminated normal controls from mild cognitive impairment. NIHTB-OIT discriminated normal controls from Alzheimer's disease dementia. Rate of olfactory decline with age was similar across all diagnostic categories. NIHTB-OIT scores were lower in participants with positive Alzheimer's biomarker tests. NIHTB-OIT scores did not differ based on APOE genotype.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Humans , Alzheimer Disease/diagnosis , Alzheimer Disease/genetics , Alzheimer Disease/psychology , Odorants , Apolipoprotein E4/genetics , Neuropsychological Tests , Cognitive Dysfunction/diagnosis , Cognitive Dysfunction/genetics , Cognitive Dysfunction/psychology , Cognition , Biomarkers
2.
J Neurosci ; 42(1): 58-68, 2022 01 05.
Article in English | MEDLINE | ID: mdl-34759031

ABSTRACT

The human sense of smell plays an important role in appetite and food intake, detecting environmental threats, social interactions, and memory processing. However, little is known about the neural circuity supporting its function. The olfactory tracts project from the olfactory bulb along the base of the frontal cortex, branching into several striae to meet diverse cortical regions. Historically, using diffusion magnetic resonance imaging (dMRI) to reconstruct the human olfactory tracts has been prevented by susceptibility and motion artifacts. Here, we used a dMRI method with readout segmentation of long variable echo-trains (RESOLVE) to minimize image distortions and characterize the human olfactory tracts in vivo We collected high-resolution dMRI data from 25 healthy human participants (12 male and 13 female) and performed probabilistic tractography using constrained spherical deconvolution (CSD). At the individual subject level, we identified the lateral, medial, and intermediate striae with their respective cortical connections to the piriform cortex and amygdala (AMY), olfactory tubercle (OT), and anterior olfactory nucleus (AON). We combined individual results across subjects to create a normalized, probabilistic atlas of the olfactory tracts. We then investigated the relationship between olfactory perceptual scores and measures of white matter integrity, including mean diffusivity (MD). Importantly, we found that olfactory tract MD negatively correlated with odor discrimination performance. In summary, our results provide a detailed characterization of the connectivity of the human olfactory tracts and demonstrate an association between their structural integrity and olfactory perceptual function.SIGNIFICANCE STATEMENT This study provides the first detailed in vivo description of the cortical connectivity of the three olfactory tract striae in the human brain, using diffusion magnetic resonance imaging (dMRI). Additionally, we show that tract microstructure correlates with performance on an odor discrimination task, suggesting a link between the structural integrity of the olfactory tracts and odor perception. Lastly, we generated a normalized probabilistic atlas of the olfactory tracts that may be used in future research to study its integrity in health and disease.


Subject(s)
Diffusion Magnetic Resonance Imaging/methods , Image Processing, Computer-Assisted/methods , Olfactory Bulb/anatomy & histology , Olfactory Pathways/anatomy & histology , Adult , Female , Humans , Male
4.
Elife ; 82019 07 24.
Article in English | MEDLINE | ID: mdl-31339489

ABSTRACT

The central processing pathways of the human olfactory system are not fully understood. The olfactory bulb projects directly to a number of cortical brain structures, but the distinct networks formed by projections from each of these structures to the rest of the brain have not been well-defined. Here, we used functional magnetic resonance imaging and k-means clustering to parcellate human primary olfactory cortex into clusters based on whole-brain functional connectivity patterns. Resulting clusters accurately corresponded to anterior olfactory nucleus, olfactory tubercle, and frontal and temporal piriform cortices, suggesting dissociable whole-brain networks formed by the subregions of primary olfactory cortex. This result was replicated in an independent data set. We then characterized the unique functional connectivity profiles of each subregion, producing a map of the large-scale processing pathways of the human olfactory system. These results provide insight into the functional and anatomical organization of the human olfactory system.


Subject(s)
Olfactory Pathways/physiology , Adult , Anatomy, Artistic , Atlases as Topic , Female , Humans , Male , Nerve Net/physiology , Olfactory Cortex/physiology
5.
Curr Biol ; 26(3): 351-5, 2016 Feb 08.
Article in English | MEDLINE | ID: mdl-26776732

ABSTRACT

A fundamental feature of memory in humans is the ability to simultaneously work with multiple types of information using independent memory systems. Working memory is conceptualized as two independent memory systems under executive control [1, 2]. Although there is a long history of using the term "working memory" to describe short-term memory in animals, it is not known whether multiple, independent memory systems exist in nonhumans. Here, we used two established short-term memory approaches to test the hypothesis that spatial and olfactory memory operate as independent working memory resources in the rat. In the olfactory memory task, rats chose a novel odor from a gradually incrementing set of old odors [3]. In the spatial memory task, rats searched for a depleting food source at multiple locations [4]. We presented rats with information to hold in memory in one domain (e.g., olfactory) while adding a memory load in the other domain (e.g., spatial). Control conditions equated the retention interval delay without adding a second memory load. In a further experiment, we used proactive interference [5-7] in the spatial domain to compromise spatial memory and evaluated the impact of adding an olfactory memory load. Olfactory and spatial memory are resistant to interference from the addition of a memory load in the other domain. Our data suggest that olfactory and spatial memory draw on independent working memory systems in the rat.


Subject(s)
Memory, Short-Term , Odorants/analysis , Rats/physiology , Smell , Spatial Memory , Animals , Male , Rats, Sprague-Dawley
SELECTION OF CITATIONS
SEARCH DETAIL
...