Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Toxicol Appl Pharmacol ; 379: 114690, 2019 09 15.
Article in English | MEDLINE | ID: mdl-31344372

ABSTRACT

Sulfolane is a ground water contaminant near refinery sites. The objective of this work was to investigate the toxicokinetics and bioavailability of sulfolane in male and female Harlan Hsd:Sprague Dawley® SD® rats and B6C3F1/N mice following a single oral administration of 10, 30, or 100 mg/kg. Sulfolane was rapidly absorbed in rats with the maximum plasma concentration, Cmax, reached at ≤1.47 h. Although Cmax increased proportionally to the dose, the half-life of elimination increased with the dose and the area under the concentration versus time curve (AUC) increased more than proportionally to the dose. In male and female rats, plasma elimination half-life increased with the dose from 1.97 to 6.33 h. Absorption of sulfolane in mice following oral administration was more rapid than in rats with Cmax reached at ≤0.55 h. In addition, mice had a shorter half-life (≤ 1.25 h) and a lower AUC than rats. In male and female mice, both Cmax and AUC increased more than proportionally to the dose. Bioavailability of sulfolane was higher in rats (81-83%) than mice (59-63%) at 10 mg/kg; at 30 and 100 mg/kg, bioavailability >100% in both species and sexes suggesting that the saturation of metabolism and clearance processes of sulfolane may begin at a single oral dose of ~30 mg/kg. There was no apparent sex difference in toxicokinetic parameters of sulfolane in rats and mice. These data demonstrate that sulfolane was well-absorbed following oral administration with high bioavailability in rats and mice with some species differences, but no sex difference.


Subject(s)
Thiophenes/toxicity , Administration, Intravenous , Administration, Oral , Animals , Biological Availability , Dose-Response Relationship, Drug , Female , Half-Life , Male , Mice , Mice, Inbred Strains , Rats , Rats, Sprague-Dawley , Sex Factors , Species Specificity , Thiophenes/administration & dosage , Thiophenes/pharmacokinetics
2.
J Anal Toxicol ; 43(6): 477-481, 2019 Jul 24.
Article in English | MEDLINE | ID: mdl-31044244

ABSTRACT

Sulfolane is an industrial solvent commonly used for extraction of aromatic hydrocarbons in the oil refining process, as well in the purification of natural gas. Its wide use and high solubility in water has led to contamination of groundwater. The objective of this work was to develop and validate an analytical method to quantitate sulfolane in rodent plasma in support of the National Toxicology Program toxicology and toxicokinetic studies of sulfolane. The method uses extraction of plasma with ethyl acetate and analysis by gas chromatography-mass spectrometry with electron ionization. The method was validated in male Sprague Dawley (SD) rat plasma over the concentration range of 20-100,000 ng/mL. The method was linear (r ≥ 0.99), accurate (mean relative error (RE) ≤ ±5.1%) and precise (relative standard deviation (RSD) ≤ 2.9%). The absolute recovery was ≥74%. The limit of detection was 0.516 ng/mL. Standards as high as ~2.5 mg/mL could be successfully diluted into the calibration range (mean %RE ≤ ±4.5; %RSD ≤ 4.6). Extracted samples were stable for at least 3 days at ambient and refrigerated temperatures, and freeze/thaw stability in matrix was demonstrated after three cycles over 3 days (calculated concentrations within 90.8-102% of Day 0 concentrations). Sulfolane was stable in frozen plasma for at least 75 days at -80°C (calculated concentrations within 93.0-98.1% of Day 0 concentrations). Matrix evaluation was performed for sulfolane in female SD rat plasma and male and female B6C3F1 mouse plasma (mean %RE ≤ ±4.9; %RSD ≤ 3.3). These data demonstrate that the method is suitable for determination of sulfolane in rodent plasma.


Subject(s)
Environmental Pollutants/blood , Thiophenes/blood , Animals , Drug Stability , Environmental Exposure/analysis , Gas Chromatography-Mass Spectrometry , Mice , Plasma , Rats , Rats, Sprague-Dawley , Reproducibility of Results
3.
J Anal Toxicol ; 35(6): 341-8, 2011 Jul.
Article in English | MEDLINE | ID: mdl-21740690

ABSTRACT

A rapid and simple liquid chromatography tandem mass spectrometry method was developed and validated for the simultaneous determination of L-ephedrine, pseudoephedrine, and caffeine in male Fisher-344 rat plasma at nanogram-per-milliliter concentrations for use in support of toxicology studies. Only 25 µL of plasma is required, and extraction is performed using a simple, single-step protein precipitation. The method was validated over a range of 2.09 to 5460 ng/mL for L-ephedrine, 2.09 to 5050 ng/mL for pseudoephedrine and 2.03 to 5340 ng/mL for caffeine. A binary gradient elution at 0.3 mL/min was used with a Waters XBridge Phenyl (2.1 × 150 mm, 3.5 µm) column and a Waters XBridge Phenyl 2.1- × 10-mm guard column at ambient temperature. The mobile phase consisted of 10 mM ammonium acetate in water (pH 5.0) and methanol. Caffeine trimethyl-(13)C(3) was used as the internal standard. The method was evaluated for linearity, recovery, precision, accuracy, and stability, and it was successfully applied in toxicokinetic studies of ephedrine, administered alone, in combination with caffeine, and in the herbal source Ma Huang.


Subject(s)
Caffeine/blood , Ephedrine/blood , Pseudoephedrine/blood , Substance Abuse Detection/methods , Animals , Chromatography, Liquid , Male , Rats , Tandem Mass Spectrometry
4.
Toxicol Sci ; 82(1): 34-45, 2004 Nov.
Article in English | MEDLINE | ID: mdl-15282402

ABSTRACT

Tg.AC mice develop epidermal papillomas in response to treatment with dermally applied nongenotoxic and complete carcinogens. The persistent environmental contaminant 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) is a multi-site rodent carcinogen and tumor promoter that induces the formation of papillomas in Tg.AC mice. To examine the dose-response relationship and compare dermal and oral routes of exposure for TCDD-induced skin papillomas, female Tg.AC mice were exposed dermally to average daily doses of 0, 2.1, 7.3, 15, 33, 52, 71, 152, and 326 ng TCDD/kg/day or 0, 75, 321, and 893 ng TCDD/kg body weight by gavage for 26 weeks. The incidence of cutaneous papillomas was increased in a dose-dependent manner, and tumors developed earlier with higher exposure to TCDD regardless of route of administration. Increased incidences of cutaneous squamous cell carcinomas were observed in mice exposed to dermal (> or =52 ng/kg) and oral (893 ng/kg) TCDD. Higher gavage doses than dermal exposure doses were required to induce papillomas and squamous cell carcinomas. Despite a linear correlation between administered dose and terminal skin concentrations, the incidence of tumor formation was lower in the gavage study than in the dermal study with respect to mean terminal skin TCDD concentrations. These studies demonstrate that, although Tg.AC mice are less responsive to TCDD by gavage than by dermal exposure, the induction of skin neoplasms is a response to systemic exposure and not solely a local response at the site of dermal application. Differences in response between the routes of exposure may reflect pharmacokinetic differences in the delivery of TCDD to the skin over the duration of the study.


Subject(s)
Carcinogenicity Tests/methods , Carcinogens/toxicity , Carcinoma, Squamous Cell/chemically induced , Environmental Pollutants/toxicity , Papilloma/chemically induced , Polychlorinated Dibenzodioxins/toxicity , Skin Neoplasms/chemically induced , Administration, Cutaneous , Administration, Oral , Animals , Carcinogens/administration & dosage , Carcinogens/pharmacokinetics , Carcinoma, Squamous Cell/pathology , Disease Models, Animal , Dose-Response Relationship, Drug , Environmental Pollutants/administration & dosage , Environmental Pollutants/pharmacokinetics , Female , Heterozygote , Mice , Mice, Transgenic , Papilloma/pathology , Polychlorinated Dibenzodioxins/administration & dosage , Polychlorinated Dibenzodioxins/pharmacokinetics , Skin/drug effects , Skin/metabolism , Skin/pathology , Skin Neoplasms/pathology , Tissue Distribution
SELECTION OF CITATIONS
SEARCH DETAIL
...