Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters











Database
Language
Publication year range
1.
Arch Biochem Biophys ; 351(2): 189-96, 1998 Mar 15.
Article in English | MEDLINE | ID: mdl-9515056

ABSTRACT

The oxidation products of ascorbic acid (AscH-) can rapidly glycate and crosslink lens proteins in vitro, producing fluorophores and browning products similar to those present in cataractous lenses. The accumulation of AscH- oxidation products, however, would largely be prevented by the millimolar levels of glutathione (GSH) present in human lens. Here we investigate whether protein aggregation could allow the oxidation of AscH- by UVA-induced reactive oxygen species in the presence of physiological levels of GSH. The metal-catalyzed oxidation of 1.0 mM AscH- by 50 microM Cu(II) was almost complete after 1 h, but no oxidation was seen in the presence of GSH concentrations as low as 0.5 mM. UVA irradiation of protein aggregates from human lens, which accumulated more than 2.0 mM singlet oxygen after 1 h, caused a 50-60% oxidation of 1.0 mM AscH-. The addition of 204 mM GSH, however, decreased AscH- oxidation by less than half, and 30% of the AscH- was oxidized even in the presence of 15 mM GSH. This diminished protection may be due, in part, to the ability of AscH-, but not GSH, to penetrate to the sites of singlet oxygen generation located within the protein. Consistent with this hypothesis, greater GSH protection was seen when a proteolytic digest of the human proteins was subjected to the same irradiation or when singlet oxygen was chemically generated from 3-(4-methyl-1-naphthyl)propionic acid endoperoxide (MNPAE) at 37 degrees C in the medium. The addition of 50 microM Cu(II) had no effect on the rate of degradation of dehydroascorbic acid (DHA). Singlet oxygen, either UVA- or MNPAE-generated, increased the rate of DHA loss. This secondary oxidation of DHA by singlet oxygen would allow the accumulation of AscH- oxidation products was not reducible by GSH. Therefore, the data presented here argue that the protein aggregation seen in older human lenses may permit oxidized AscH--induced crosslinking to occur even at physiological GSH levels.


Subject(s)
Ascorbic Acid/metabolism , Crystallins/radiation effects , Glutathione/pharmacology , Aging/physiology , Copper/metabolism , Cross-Linking Reagents/metabolism , Crystallins/physiology , Dehydroascorbic Acid/metabolism , Glycosylation/radiation effects , Humans , Kinetics , Oxidation-Reduction , Peroxides/metabolism , Reactive Oxygen Species/metabolism , Ultraviolet Rays
SELECTION OF CITATIONS
SEARCH DETAIL