Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Cell ; 68(3): 504-514.e7, 2017 11 02.
Article in English | MEDLINE | ID: mdl-29107534

ABSTRACT

In eukaryotic cells, protein synthesis typically begins with the binding of eIF4F to the 7-methylguanylate (m7G) cap found on the 5' end of the majority of mRNAs. Surprisingly, overall translational output remains robust under eIF4F inhibition. The broad spectrum of eIF4F-resistant translatomes is incompatible with cap-independent translation mediated by internal ribosome entry sites (IRESs). Here, we report that N6-methyladenosine (m6A) facilitates mRNA translation that is resistant to eIF4F inactivation. Depletion of the methyltransferase METTL3 selectively inhibits translation of mRNAs bearing 5' UTR methylation, but not mRNAs with 5' terminal oligopyrimidine (TOP) elements. We identify ABCF1 as a critical mediator of m6A-promoted translation under both stress and physiological conditions. Supporting the role of ABCF1 in m6A-facilitated mRNA translation, ABCF1-sensitive transcripts largely overlap with METTL3-dependent mRNA targets. By illustrating the scope and mechanism of eIF4F-independent mRNA translation, these findings reshape our current perceptions of cellular translational pathways.


Subject(s)
Adenosine/analogs & derivatives , Eukaryotic Initiation Factor-4F/metabolism , Peptide Chain Initiation, Translational/drug effects , RNA Caps/genetics , RNA, Messenger/metabolism , 5' Untranslated Regions/genetics , ATP-Binding Cassette Transporters/genetics , ATP-Binding Cassette Transporters/metabolism , Adenosine/pharmacology , Eukaryotic Initiation Factor-4F/genetics , HeLa Cells , Humans , Internal Ribosome Entry Sites , Methyltransferases/genetics , Methyltransferases/metabolism , RNA Caps/drug effects , RNA, Messenger/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...