Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Med Chem ; 63(15): 8046-8058, 2020 08 13.
Article in English | MEDLINE | ID: mdl-32407115

ABSTRACT

Respiratory syncytial virus (RSV) is a seasonal virus that infects the lungs and airways of 64 million children and adults every year. It is a major cause of acute lower respiratory tract infection and is associated with significant morbidity and mortality. Despite the large medical and economic burden, treatment options for RSV-associated bronchiolitis and pneumonia are limited and mainly consist of supportive care. This publication covers the medicinal chemistry efforts resulting in the identification of JNJ-53718678, an orally bioavailable RSV inhibitor that was shown to be efficacious in a phase 2a challenge study in healthy adult subjects and that is currently being evaluated in hospitalized infants and adults. Cocrystal structures of several new derivatives helped in rationalizing some of the structure-activity relationship (SAR) trends observed.


Subject(s)
Antiviral Agents/chemistry , Drug Discovery/methods , Imidazolidines/chemistry , Indoles/chemistry , Respiratory Syncytial Virus, Human/drug effects , Viral Fusion Protein Inhibitors/chemistry , Administration, Oral , Antiviral Agents/administration & dosage , Crystallography, X-Ray/methods , HeLa Cells , Humans , Imidazolidines/administration & dosage , Indoles/administration & dosage , Protein Structure, Secondary , Respiratory Syncytial Virus, Human/physiology , Viral Fusion Protein Inhibitors/administration & dosage
2.
J Med Chem ; 62(21): 9680-9690, 2019 11 14.
Article in English | MEDLINE | ID: mdl-31647875

ABSTRACT

In the search for novel influenza inhibitors we evaluated 7-fluoro-substituted indoles as bioisosteric replacements for the 7-azaindole scaffold of Pimodivir, a PB2 (polymerase basic protein 2) inhibitor currently in clinical development. Specifically, a 5,7-difluoroindole derivative 11a was identified as a potent and metabolically stable influenza inhibitor. 11a demonstrated a favorable oral pharmacokinetic profile and in vivo efficacy in mice. In addition, it was found that 11a was not at risk of metabolism via aldehyde oxidase, an advantage over previously described inhibitors of this class. The crystal structure of 11a bound to influenza A PB2 cap region is disclosed here and deposited to the PDB.


Subject(s)
Antiviral Agents/chemical synthesis , Antiviral Agents/pharmacology , Drug Design , Indoles/chemical synthesis , Indoles/pharmacology , Viral Proteins/drug effects , A549 Cells , Animals , Antiviral Agents/chemistry , Antiviral Agents/pharmacokinetics , Crystallography, X-Ray , Dogs , Humans , Indoles/chemistry , Indoles/pharmacokinetics , Influenza A Virus, H1N1 Subtype/drug effects , Influenza A Virus, H3N2 Subtype/drug effects , Madin Darby Canine Kidney Cells , Microbial Sensitivity Tests , Molecular Structure
3.
Bioorg Med Chem Lett ; 26(19): 4781-4784, 2016 10 01.
Article in English | MEDLINE | ID: mdl-27595421

ABSTRACT

The synthesis, SAR and preclinical characterization of a series of 6-chloro-N-(2-(4,4-difluoropiperidin-1-yl)-2-(2-(trifluoromethyl)pyrimidin-5-yl)ethyl)quinoline-5-carboxamide based P2X7 antagonists is described herein. The lead compounds are potent inhibitors in Ca(2+) flux and whole blood IL-1ß P2X7 release assays at both human and mouse isoforms. Compound 1e showed a robust reduction of IL-1ß release in a mouse ex vivo model with a 50mg/kg oral dose. Evaluation of compound 1e in the mouse SNI tactile allodynia, carrageenan-induced paw edema or CIA models resulted in no analgesic or anti-inflammatory effects.


Subject(s)
Purinergic P2X Receptor Antagonists/pharmacology , Quinolines/pharmacology , Animals , Drug Discovery , Humans , Interleukin-1beta/metabolism , Mice , Purinergic P2X Receptor Antagonists/chemistry , Quinolines/chemistry , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...