Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
bioRxiv ; 2024 Sep 21.
Article in English | MEDLINE | ID: mdl-39345648

ABSTRACT

Background: It has been reported that circadian clock components, Brain and Muscle ARNT-Like 1 (BMAL1) and Circadian Locomotor Output Cycles Kaput (CLOCK), are uniquely essential for glioblastoma (GBM) stem cell (GSC) biology and survival. Consequently, we developed a novel Cryptochrome (CRY) activator SHP1705, which inhibits BMAL1-CLOCK transcriptional activity. Methods: We analyzed buffy coats isolated from Phase 1 clinical trial subjects' blood to assess any changes to circadian, housekeeping, and blood transcriptome-based biomarkers following SHP1705 treatment. We utilized GlioVis to determine which circadian genes are differentially expressed in non-tumor versus GBM tissues. We employed in vitro and in vivo methods to test the efficacy of SHP1705 against patient-derived GSCs and xenografts in comparison to earlier CRY activator scaffolds. Additionally, we applied a novel-REV-ERB agonist SR29065, which inhibits BMAL1 transcription, to determine whether targeting both negative limbs of the circadian transcription-translation feedback loop (TTFL) would yield synergistic effects against various GBM cells. Results: SHP1705 is safe and well-tolerated in Phase I clinical trials. SHP1705 has increased selectivity for the CRY2 isoform and potency against GSC viability compared to previously published CRY activators. SHP1705 prolonged survival in mice bearing GBM tumors established with GSCs. When combined with the novel REV-ERB agonist SR29065, SHP1705 displayed synergy against multiple GSC lines and differentiated GSCs (DGCs). Conclusions: These demonstrate the efficacy of SHP1705 against GSCs, which pose for GBM patient outcomes. They highlight the potential of novel circadian clock compounds in targeting GBM as single agents or in combination with each other or current standard-of-care. KEY POINTS: SHP1705 is a novel CRY2 activator that has shown success in Phase 1 safety trialsSHP1705 has a significantly improved efficacy against GSCs and GBM PDX tumorsNovel REV-ERB agonist SR29065 and SHP1705 display synergistic effects against GSCs. IMPORTANCE OF THE STUDY: CRY2 is decreased in GBM tissues compared to CRY1 suggesting that promoting CRY2 activity will be an efficacious GBM treatment paradigm. SHP1705, a CRY2 activator that has shown success in Phase 1 safety trials, has significantly improved preclinical efficacy. Novel REV-ERB agonist SR29065 displays synergistic effects against diverse GBM cells.

2.
Proc Natl Acad Sci U S A ; 119(40): e2203936119, 2022 10 04.
Article in English | MEDLINE | ID: mdl-36161947

ABSTRACT

The mammalian cryptochrome isoforms, CRY1 and CRY2, are core circadian clock regulators that work redundantly. Recent studies revealed distinct roles of these closely related homologs in clock output pathways. Isoform-selective control of CRY1 and CRY2 is critical for further understanding their redundant and distinct roles. KL001 was the first identified small-molecule CRY modulator that activates both CRY1 and CRY2. SHP656 is an orally available KL001 derivative and has shown efficacy in blood glucose control and inhibition of glioblastoma stem cell (GSC) growth in animal models. However, CRY isoform selectivity of SHP656 was uncharacterized, limiting understanding of the roles of CRY1 and CRY2. Here, we report the elucidation of CRY2 selectivity of SHP656. SHP656 lengthened cellular circadian period in a CRY2-dependent manner and selectively interacted with CRY2. By determining the X-ray crystal structure of CRY2 in complex with SHP656 and performing molecular dynamics simulations, we elucidated compound interaction mechanisms. SHP656 binding was compatible with the intrinsic CRY2 gatekeeper W417 "in" orientation and also a close "further in" conformation. Perturbation of W417 interaction with the lid loop resulted in a reduced effect of SHP656 on CRY2, supporting an important role of gatekeeper orientation in isoform selectivity. We also identified the R form of SHP656 (called SHP1703) as the active isomer. Treatment with SHP1703 effectively reduced GSC viability. Our results suggest a direct role of CRY2 in glioblastoma antitumorigenesis and provide a rationale for the selective modulation of CRY isoforms in the therapeutic treatment of glioblastoma and other circadian clock-related diseases.


Subject(s)
Circadian Clocks , Glioblastoma , Animals , Carbazoles , Circadian Rhythm/physiology , Cryptochromes/metabolism , Glioblastoma/drug therapy , Mammals/metabolism , Protein Isoforms/genetics , Sulfonamides
SELECTION OF CITATIONS
SEARCH DETAIL