Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 10(1): 14096, 2020 08 24.
Article in English | MEDLINE | ID: mdl-32839474

ABSTRACT

Spatial and temporal changes in land cover have direct impacts on the hydrological cycle and stream quality. Techniques for accurately and efficiently mapping these changes are evolving quickly, and it is important to evaluate how useful these techniques are to address the environmental impact of land cover on riparian buffer areas. The objectives of this study were to: (1) determine the classes and distribution of land cover in the riparian areas of streams; (2) examine the discrepancies within the existing land cover data from National Land Cover Database (NLCD) using high-resolution imagery of the National Agriculture Imagery Program (NAIP) and a LiDAR canopy height model; and (3) develop a technique using LiDAR data to help characterize riparian buffers over large spatial extents. One-meter canopy height models were constructed in a high-throughput computing environment. The machine learning algorithm Support Vector Machine (SVM) was trained to perform supervised land cover classification at a 1-m resolution on the Google Earth Engine (GEE) platform using NAIP imagery and LiDAR-derived canopy height models. This integrated approach to land cover classification provided a substantial improvement in the resolution and accuracy of classifications with F1 Score of each land cover classification ranging from 64.88 to 95.32%. The resulting 1-m land cover map is a highly detailed representation of land cover in the study area. Forests (evergreen and deciduous) and wetlands are by far the dominant land cover classes in riparian zones of the Lower Savannah River Basin, followed by cultivated crops and pasture/hay. Stress from urbanization in the riparian zones appears to be localized. This study demonstrates a method to create accurate high-resolution riparian buffer maps which can be used to improve water management and provide future prospects for improving buffer zones monitoring to assess stream health.

2.
Environ Monit Assess ; 190(5): 272, 2018 Apr 10.
Article in English | MEDLINE | ID: mdl-29637320

ABSTRACT

Dissolved oxygen is a critical component of river water quality. This study investigated average weekly dissolved oxygen (AWDO) and average weekly water temperature (AWT) in the Savannah River during 2015 and 2016 using data from the Intelligent River® sensor network. Weekly data and seasonal summary statistics revealed distinct seasonal patterns that impact both AWDO and AWT regardless of location along the river. Within seasons, spatial patterns of AWDO and AWT along the river are also evident. Linear mixed effects models indicate that AWT and low and high river flow conditions had a significant impact on AWDO, but added little predictive information to the models. Low and high river flow conditions had a significant impact on AWT, but also added little predictive information to the models. Spatial linear mixed effects models yielded parameter estimates that were effectively the same as non-spatial linear mixed effects models. However, components of variance from spatial linear mixed effects models indicate that 23-32% of the total variance in AWDO and that 12-18% of total variance in AWT can be apportioned to the effect of spatial covariance. These results indicate that location, week, and flow-directional spatial relationships are critically important considerations for investigating relationships between space- and time-varying water quality metrics.


Subject(s)
Environmental Monitoring/methods , Oxygen/analysis , Rivers/chemistry , Temperature , Fresh Water , Seasons , Water Quality
SELECTION OF CITATIONS
SEARCH DETAIL
...