Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Cent Sci ; 5(9): 1584-1590, 2019 Sep 25.
Article in English | MEDLINE | ID: mdl-31572785

ABSTRACT

Direct chemical synthesis from methane and air under ambient conditions is attractive yet challenging. Low-valent organometallic compounds are known to activate methane, but their electron-rich nature seems incompatible with O2 and prevents catalytic air oxidation. We report selective oxidation of methane to methanol with an O2-sensitive metalloradical as the catalyst and air as the oxidant at room temperature and ambient pressure. The incompatibility between C-H activation and O2 oxidation is reconciled by electrochemistry and nanomaterials, with which a concentration gradient of O2 within the nanowire array spatially segregated incompatible steps in the catalytic cycle. An unexpected 220 000-fold increase of the apparent reaction rate constants within the nanowire array leads to a turnover number up to 52 000 within 24 h. The synergy between nanomaterials and organometallic chemistry warrants a new catalytic route for CH4 functionalization.

SELECTION OF CITATIONS
SEARCH DETAIL
...