Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Exp Brain Res ; 240(2): 537-548, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34817643

ABSTRACT

This study aims to clarify unresolved questions from two earlier studies by McGarry et al. Exp Brain Res 218(4): 527-538, 2012 and Kaplan and Iacoboni Cogn Process 8: 103-113, 2007 on human mirror neuron system (hMNS) responsivity to multimodal presentations of actions. These questions are: (1) whether the two frontal areas originally identified by Kaplan and Iacoboni (ventral premotor cortex [vPMC] and inferior frontal gyrus [IFG]) are both part of the hMNS (i.e., do they respond to execution as well as observation), (2) whether both areas yield effects of biologicalness (biological, control) and modality (audio, visual, audiovisual), and (3) whether the vPMC is preferentially responsive to multimodal input. To resolve these questions about the hMNS, we replicated and extended McGarry et al.'s electroencephalography (EEG) study, while incorporating advanced source localization methods. Participants were asked to execute movements (ripping paper) as well as observe those movements across the same three modalities (audio, visual, and audiovisual), all while 64-channel EEG data was recorded. Two frontal sources consistent with those identified in prior studies showed mu event-related desynchronization (mu-ERD) under execution and observation conditions. These sources also showed a greater response to biological movement than to control stimuli as well as a distinct visual advantage, with greater responsivity to visual and audiovisual compared to audio conditions. Exploratory analyses of mu-ERD in the vPMC under visual and audiovisual observation conditions suggests that the hMNS tracks the magnitude of visual movement over time.


Subject(s)
Mirror Neurons , Motor Cortex , Electroencephalography/methods , Humans , Mirror Neurons/physiology , Motor Cortex/physiology , Movement/physiology
2.
Cogn Affect Behav Neurosci ; 22(2): 291-303, 2022 04.
Article in English | MEDLINE | ID: mdl-34811708

ABSTRACT

Sensorimotor brain areas have been implicated in the recognition of emotion expressed on the face and through nonverbal vocalizations. However, no previous study has assessed whether sensorimotor cortices are recruited during the perception of emotion in speech-a signal that includes both audio (speech sounds) and visual (facial speech movements) components. To address this gap in the literature, we recruited 24 participants to listen to speech clips produced in a way that was either happy, sad, or neutral in expression. These stimuli also were presented in one of three modalities: audio-only (hearing the voice but not seeing the face), video-only (seeing the face but not hearing the voice), or audiovisual. Brain activity was recorded using electroencephalography, subjected to independent component analysis, and source-localized. We found that the left presupplementary motor area was more active in response to happy and sad stimuli than neutral stimuli, as indexed by greater mu event-related desynchronization. This effect did not differ by the sensory modality of the stimuli. Activity levels in other sensorimotor brain areas did not differ by emotion, although they were greatest in response to visual-only and audiovisual stimuli. One possible explanation for the pre-SMA result is that this brain area may actively support speech emotion recognition by using our extensive experience expressing emotion to generate sensory predictions that in turn guide our perception.


Subject(s)
Motor Cortex , Speech Perception , Acoustic Stimulation , Auditory Perception , Emotions , Humans , Speech , Speech Perception/physiology , Visual Perception/physiology
3.
Saf Health Work ; 12(2): 184-191, 2021 Jun.
Article in English | MEDLINE | ID: mdl-34178395

ABSTRACT

BACKGROUND: Hearing protection devices (HPDs) are often used in the workplace to prevent hearing damage caused by noise. However, a factor that can lead to hearing loss in the workplace is improper HPD fitting, and the previous literature has shown that instructing workers on how to properly insert their HPDs can make a significant difference in the degree of attenuation. METHODS: Two studies were completed on a total of 33 Hydro One workers. A FitCheck Solo field attenuation estimation system was used to measure the personal attenuation rating (PAR) before and after providing one-on-one fitting instructions. In addition, external ear canal diameters were measured, and a questionnaire with items related to frequency of use, confidence, and discomfort was administered. RESULTS: Training led to an improvement in HPD attenuation, particularly for participants with poorer PARs before training. The questionnaire results indicated that much HPD discomfort is caused by heat, humidity, and communication difficulties. External ear canal asymmetry did not appear to significantly influence the measured PAR. CONCLUSION: In accordance with the previous literature, our studies suggest that one-on-one instruction is an effective training method for HPD use. Addressing discomfort issues from heat, humidity, and communication issues could help to improve the use of HPDs in the workplace. Further research into the effects of canal asymmetry on the PAR is needed.

SELECTION OF CITATIONS
SEARCH DETAIL
...