Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Monit Assess ; 118(1-3): 125-45, 2006 Jul.
Article in English | MEDLINE | ID: mdl-16897538

ABSTRACT

We utilized landscape and breeding bird assemblage data from three Breeding Bird Survey (BBS) routes sampled from 1965-1995 to develop and test a grassland integrity index (GII) in a mixed-grass prairie area of Oklahoma. The overall study region is extensively fragmented from long-term agricultural activity, and native habitat remnants have been degraded by recent encroachment of woody vegetation, namely eastern red cedar (Juniperus virginiana L.). The 50 individual bird survey points along the BBS routes, known as stops, were used as sample sites. Our process first focused on developing a grassland disturbance index (GDI) as a measure of cumulative landscape disturbances for these sites. The GDI was based on five key landscape variables identified in an earlier species-level study of long-term avian community dynamics: total tree, shrub, and herbaceous vegetation cover indices, overall mean landscape patch size, and grassland patch core size. The GII was then developed based on breeding bird assemblage data. Assemblages were based on commonly used response guilds reflective of five avian life history parameters: foraging mode/location, nesting location, habitat specificity, migratory pattern, and dietary guild. We tested the response of 78 candidate assemblage metrics to the GDI, and eliminated those with no or poor response or with high correlations (redundant), resulting in 13 metrics for use in the final index. Individual metric scores were scaled to fall between 0 and 10, and the cumulative index to range from 0 to 100. Although broader application and refinement are possible, the avian-based GII has an advantage over labor-intensive, habitat-based monitoring in that the GII is derived from readily available long-term BBS data. Therefore, the GII shows promise as an inexpensive tool that could easily be applied over other areas to monitor changes in regional grassland conditions.


Subject(s)
Birds/classification , Environmental Monitoring/methods , Poaceae , Agriculture , Animals , Breeding , Ecosystem , Juniperus , Oklahoma , Trees
SELECTION OF CITATIONS
SEARCH DETAIL
...