Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Appl Environ Microbiol ; 88(2): e0167521, 2022 01 25.
Article in English | MEDLINE | ID: mdl-34731047

ABSTRACT

Antimicrobial resistance is a critical issue that is no longer restricted to hospital settings but also represents a growing problem involving intensive animal production systems. In this study, we performed a microbiological and molecular investigation of priority pathogens carrying transferable resistance genes to critical antimicrobials in 1-day-old chickens imported from Brazil to Uruguay. Bacterial identification was performed by matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) mass spectrometry, and antibiotic susceptibility was determined by Sensititre. Antimicrobial resistance genes were sought by PCR, and clonality was assessed by pulsed-field gel electrophoresis (PFGE). Four multidrug-resistant (MDR) representative strains were sequenced by an Illumina and/or Oxford Nanopore Technologies device. Twenty-eight MDR isolates were identified as Escherichia coli (n = 14), Enterobacter cloacae (n = 11), or Klebsiella pneumoniae (n = 3). While resistance to oxyiminocephalosporins was due to blaCTX-M-2, blaCTX-M-8, blaCTX-M-15, blaCTX-M-55, and blaCMY-2, plasmid-mediated quinolone resistance was associated with the qnrB19, qnrE1, and qnrB2 genes. Finally, resistance to aminoglycosides and fosfomycin was due to the presence of 16S rRNA methyltransferase rmtG and fosA-type genes, respectively. Short- and long-read genome sequencing of E. cloacae strain ODC_Eclo3 revealed the presence of IncQ/rmtG (pUR-EC3.1; 7,400 bp), IncHI2A/mcr-9.1/blaCTX-M-2 (pUR-EC3.2, ST16 [pMLST; 408,436 bp), and IncN2/qnrB19/aacC3/aph(3″)-Ib (pUR-EC3.3) resistance plasmids. Strikingly, the blaCTX-M-2 gene was carried by a novel Tn1696-like composite transposon designated Tn7337. In summary, we report that imported 1-day-old chicks can act as Trojan horses for the hidden spread of WHO critical-priority MDR pathogens harboring mcr-9, rmtG, and extended-spectrum ß-lactamase genes in poultry farms, which is a critical issue from a One Health perspective. IMPORTANCE Antimicrobial resistance is considered a significant problem for global health, including within the concept of One Health; therefore, the food chain connects human health and animal health directly. In this work, we searched for microorganisms resistant to antibiotics considered critical for human health in intestinal microbiota of 1-day-old baby chicks imported to Uruguay from Brazil. We describe genes for resistance to antibiotics whose use the WHO has indicated to "watch" or "reserve" (AWaRe classification), such as rmtG and mcr9.1, which confer resistance to all the aminoglycosides and colistin, respectively, among other genes, and their presence in new mobile genetic elements that favor its dissemination. The sustained entry of these microorganisms evades the sanitary measures implemented by the countries and production establishments to reduce the selection of resistant microorganisms. These silently imported resistant microorganisms could explain a considerable part of the antimicrobial resistance problems found in the production stages of the system.


Subject(s)
Chickens , Escherichia coli Proteins , Animals , Anti-Bacterial Agents/pharmacology , Chickens/genetics , Colistin , Drug Resistance, Multiple, Bacterial/genetics , Escherichia coli Proteins/genetics , Microbial Sensitivity Tests , Plasmids/genetics , RNA, Ribosomal, 16S , beta-Lactamases/genetics
2.
Front Vet Sci ; 7: 588919, 2020.
Article in English | MEDLINE | ID: mdl-33330715

ABSTRACT

The aim of this work was to detect Escherichia coli isolates displaying resistance to oxyimino-cephalosporins, quinolones, and colistin in feces from livestock in Uruguay. During 2016-2019, fecal samples from 132 broiler and layer chicken flocks, 100 calves, and 50 pigs, were studied in Uruguay. Samples were cultured on MacConkey Agar plates supplemented with ciprofloxacin, ceftriaxone, or colistin. E. coli isolates were identified by mass spectrometry and antibiotic susceptibility testing was performed by disk diffusion agar method and colistin agar test. Antibiotic resistance genes were detected by polymerase chain reaction and sequencing. The most frequently detected resistance gene was qnrB19, recovered from 87 animals. Regarding plasmid-mediated quinolone resistance genes, qnrS1 was the second in prevalence (23 animals) followed by qnrE1, found in 6 chickens and two calves. Regarding resistance to oxyimino-cephalosporins, 8 different ß-lactamase genes were detected: bla CTX-M-8 and bla CMY-2 were found in 23 and 19 animals, respectively; next, bla CTX-M-2 and bla SHV-12 in 7 animals each, followed by bla CTX-M-14 in 5, bla CTX-M-15 and bla SHV2a in 2, and bla CTX-M-55 in a single animal. Finally, the mcr-1 gene was detected only in 8 pigs from a single farm, and in a chicken. Isolates carrying bla CMY-2 and bla SHV-12 were also found in these animals, including two isolates featuring the bla CMY-2/mcr-1 genotype. To the best of our knowledge, this is the first work in which the search for transferable resistance to highest priority critically important antibiotics for human health is carried out in chickens and pigs chains of production animals in Uruguay.

SELECTION OF CITATIONS
SEARCH DETAIL
...