Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Chemosphere ; 213: 587-595, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30268939

ABSTRACT

Among the release solutions for reducing the discharge of organic and persistent contaminants in the aquatic environment, the use of a tertiary treatment in addition to existing conventional wastewater treatment processes is considered. The use of micro-grain activated carbon in a fluidized bed is a promising technique investigated in this study. The effluents from a large-scale pilot system were analyzed by liquid chromatography coupled with high-resolution mass spectrometry (QToF). Several strategies were deployed, namely molecular fingerprint comparison, suspected and non-target analyses, identification of refractory compounds to treatment, and finally, quantification of identified compounds. The evaluation of the molecular fingerprints provided evidence of the overall effect of the tertiary treatment on the treated wastewater quality. The suspected approach highlighted the presence of 83 pharmaceuticals and pesticides as well as transformation products in the effluents. The non-target approaches also highlighted compounds refractory to tertiary treatment, such as illicit drugs or some pharmaceuticals. The identification and quantification of identified compounds underscored the suitability of micro-grain activated carbon in eliminating many classes of pharmaceuticals with various physicochemical properties, such as anti-hypertensive, analgesic, anti-viral, antidepressant and even various pesticides.


Subject(s)
Charcoal/analysis , Mass Spectrometry/methods , Wastewater/chemistry , Water Purification/methods , Analgesics , Antidepressive Agents , Antihypertensive Agents , Antiviral Agents , Charcoal/chemistry , Pesticides/analysis , Pesticides/isolation & purification , Pharmaceutical Preparations/isolation & purification , Water Pollutants, Chemical/analysis
2.
Sci Total Environ ; 542(Pt A): 983-96, 2016 Jan 15.
Article in English | MEDLINE | ID: mdl-26571333

ABSTRACT

Among the solutions to reduce micropollutant discharges into the aquatic environment, activated carbon adsorption is a promising technique and a large scale pilot has been tested at the Seine Centre (240,000 m(3)/d - Paris, France) wastewater treatment plant (WWTP). While most of available works studied fixed bed or contact reactors with a separated separation step, this study assesses a new type of tertiary treatment based on a fluidized bed containing a high mass of activated carbon, continuously renewed. For the first time in the literature, micro-grain activated carbon (µGAC) was studied. The aims were (1) to determine the performances of fluidized bed operating with µCAG on both emerging micropollutants and conventional wastewater quality parameters, and (2) to compare its efficiency and applicability to wastewater to former results obtained with PAC. Thus, conventional wastewater quality parameters (n=11), pharmaceuticals and hormones (PPHs; n=62) and other emerging pollutants (n=57) have been monitored in µGAC configuration during 13 campaigns. A significant correlation has been established between dissolved organic carbon (DOC), PPHs and UV absorbance at 254 nm (UV-254) removals. This confirms that UV-254 could be used as a tertiary treatment performance indicator to monitor the process. This parameter allowed identifying that the removals of UV-254 and DOC reach a plateau from a µGAC retention time (SRT) of 90-100 days. The µGAC configuration substantially improves the overall quality of the WWTP discharges by reducing biological (38-45%) and chemical oxygen demands (21-48%), DOC (13-44%) and UV-254 (22-48%). In addition, total suspended solids (TSS) are retained by the µGAC bed and a biological activity (nitratation) leads to a total elimination of NO2(-). For micropollutants, PPHs have a good affinity for µGAC and high (>60%) or very high (>80%) removals are observed for most of the quantified compounds (n=22/32), i.e. atenolol (92-97%), carbamazepine (80-94%), ciprofloxacin (75-95%), diclofenac (71-97%), oxazepam (74-91%) or sulfamethoxazole (56-83%). In addition, alkylphenols, artificial sweeteners, benzotriazole, bisphenol A, personal care products (triclocarban and parabens) and pesticides have removals lying in the 50 ->90% range. Overall, the fluidized bed of µGAC allows obtaining performances comparable to PAC at the same activated carbon dose. Indeed, the average removal of the 13 PPHs found at a high occurrence (>75%) in WWTP discharges is similar at 20 g/m(3) of µGAC (78-89%) and PAC (85-93%). In addition, this recycled µGAC operation leads to several operational advantages (no FeCl3, reactivable, higher SRT, higher treated flow) and has a stronger impact on the overall wastewater quality compared to PAC.


Subject(s)
Charcoal/chemistry , Waste Disposal, Fluid/methods , Wastewater/chemistry , Water Pollutants, Chemical/analysis , Adsorption , Biological Oxygen Demand Analysis , Paris
3.
Water Res ; 72: 315-30, 2015 Apr 01.
Article in English | MEDLINE | ID: mdl-25466636

ABSTRACT

The efficacy of a fluidized powdered activated carbon (PAC) pilot (CarboPlus(®)) was studied in both nominal (total nitrification + post denitrification) and degraded (partial nitrification + no denitrification) configuration of the Seine Centre WWTP (Colombes, France). In addition to conventional wastewater parameters 54 pharmaceuticals and hormones (PhPHs) and 59 other emerging pollutants were monitored in influents and effluents of the pilot. Thus, the impacts of the WWTP configuration, the process operation and the physico-chemical properties of the studied compounds were assessed in this article. Among the 26 PhPHs quantified in nominal WWTP configuration influents, 8 have high dissolved concentrations (>100 ng/L), 11 have an intermediary concentration (10-100 ng/L) and 7 are quantified below 10 ng/L. Sulfamethoxazole is predominant (about 30% of the sum of the PhPHs). Overall, 6 PhPHs are poorly to moderately removed (<60%), such as ibuprofen, paracetamol or estrone, while 9 are very well removed (>80%), i.e. beta blockers, carbamazepine or trimethoprim, and 11 are well eliminated (60-80%), i.e. diclofenac, naproxen or sulfamethoxazole. In degraded WWTP configuration, higher levels of organic matter and higher concentrations of most pollutants are observed. Consequently, most PhPHs are substantially less removed in percentages but the removed flux is higher. Thus, the PAC dose required to achieve a given removal percentage is higher in degraded WWTP configuration. For the other micropollutants (34 quantified), artificial sweeteners and phthalates are found at particularly high concentrations in degraded WWTP configuration influents, up to µg/L range. Only pesticides, bisphenol A and parabens are largely eliminated (50-95%), while perfluorinated acids, PAHs, triclosan and sweeteners are not or weakly removed (<50%). The remaining compounds exhibit a very variable fate from campaign to campaign. The fresh PAC dose was identified as the most influencing operation parameter and is strongly correlated to performances. Charge and hydrophobicity of compounds have been recognized as crucial for the micropollutant adsorption on PAC, as well as the molecular weight. Finally, a PAC dose of 10 mg/L allows an average removal of 72-80% of the sum of the PhPHs in nominal WWTP configuration. The comparaison of the results with those from the scarce other studies tends to indicate that an extrapolation of them to different PAC processes and to other WWTPs could be possible and relevant, taking into account the differences of water quality from WWTP to WWTP.


Subject(s)
Charcoal/chemistry , Waste Disposal, Fluid , Wastewater/chemistry , Water Pollutants, Chemical/isolation & purification , Water Purification , Hormones/isolation & purification , Pharmaceutical Preparations/isolation & purification , Pilot Projects , Powders , Water Quality
4.
J Environ Qual ; 38(2): 772-81, 2009.
Article in English | MEDLINE | ID: mdl-19244499

ABSTRACT

Compost application tends to increase soil fertility and is likely to modify soil hydrodynamic properties by acting on soil structural porosity. Two composts, a municipal solid waste compost (MSW) and a co-compost of green wastes and sewage sludge (SGW), have been applied every other year for 6 yr to cultivated plots located on a silt loam soil in the Parisian Basin, France. Four soil zones were defined in the topsoil after plowing: the plowpan located at the base of the plowed layer, compacted (Delta) or noncompacted (Gamma) zones located within the plowed layer, and interfurrows created by plowing and containing a large quantity of crop residues together with the recently-applied compost. To assess the effect of compost application on the near-saturated soil hydraulic conductivity, infiltration rates were measured using a tension disc infiltrometer at three water pressure potentials -0.6, -0.2, and -0.05 kPa in the various zones of the soil profile. Compost addition decreased K((sat)) in the interfurrows after plowing by almost one order of magnitude with average values of 5.6 x 10(-5) m.s(-1) in the MSW plot and 4.1 x 10(-5) m.s(-1) in the SGW plot, against 2.2 x 10(-4) m.s(-1) in the control plot. This effect had disappeared 6 mo after plowing when the average K((sat)) in the control plot had decreased to 1.9 x 10(-5) m.s(-1) while that in the compost-amended plots remained stable.


Subject(s)
Sewage/chemistry , Soil/analysis , Water/analysis , Carbon/analysis , Nitrogen/analysis , Organic Chemicals/analysis , Porosity , Seeds
5.
J Contam Hydrol ; 81(1-4): 63-88, 2005 Dec.
Article in English | MEDLINE | ID: mdl-16169123

ABSTRACT

Two series of displacement experiments with isoproturon and metribuzin herbicides were performed on two undisturbed grassed filter strip soil cores, under unsaturated steady-state flow conditions. Several rainfall intensities (0.070, 0.147, 0.161, 0.308 and 0.326 cm h(-1)) were used. A water tracer (bromide) was simultaneously injected in each displacement experiment. A descriptive analysis of experimental breakthrough curves of bromide and herbicides combined with a modeling analysis showed an impact of rainfall intensity on the solute transport. Two contrasting physical non-equilibrium transport processes occurred. Multiple (three) porosity domains contributed to flow at the highest rainfall intensities, including preferential flow through macropore pathways. Macropores were not active any longer at intermediate and lowest velocities, and the observed preferential transport was described using dual-porosity-type models with a zero or low flow in the matrix domain. Chemical non-equilibrium transport of herbicides was found at all rainfall intensities. Significantly higher estimated values of degradation rate parameters as compared to batch data were correlated with the degree of non-equilibrium sorption. Experimental breakthrough curves were analyzed using different physical and chemical equilibrium and non-equilibrium transport models: convective-dispersive model (CDE), dual-porosity model (MIM), dual-permeability model (DP), triple-porosity, dual permeability model (DP-MIM); each combined with both chemical instantaneous and kinetic sorption.


Subject(s)
Herbicides/analysis , Models, Chemical , Phenylurea Compounds/analysis , Rain , Soil/analysis , Triazines/analysis , Diffusion , Poaceae , Porosity
SELECTION OF CITATIONS
SEARCH DETAIL
...