Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
J Clin Invest ; 134(6)2024 Jan 18.
Article in English | MEDLINE | ID: mdl-38236642

ABSTRACT

Cancer cell plasticity contributes to therapy resistance and metastasis, which represent the main causes of cancer-related death, including in breast cancer. The tumor microenvironment drives cancer cell plasticity and metastasis, and unraveling the underlying cues may provide novel strategies for managing metastatic disease. Using breast cancer experimental models and transcriptomic analyses, we show that stem cell antigen-1 positive (SCA1+) murine breast cancer cells enriched during tumor progression and metastasis had higher in vitro cancer stem cell-like properties, enhanced in vivo metastatic ability, and generated tumors rich in Gr1hiLy6G+CD11b+ cells. In turn, tumor-educated Gr1+CD11b+ (Tu-Gr1+CD11b+) cells rapidly and transiently converted low metastatic SCA1- cells into highly metastatic SCA1+ cells via secreted oncostatin M (OSM) and IL-6. JAK inhibition prevented OSM/IL-6-induced SCA1+ population enrichment, while OSM/IL-6 depletion suppressed Tu-Gr1+CD11b+-induced SCA1+ population enrichment in vitro and metastasis in vivo. Moreover, chemotherapy-selected highly metastatic 4T1 cells maintained high SCA1+ positivity through autocrine IL-6 production, and in vitro JAK inhibition blunted SCA1 positivity and metastatic capacity. Importantly, Tu-Gr1+CD11b+ cells invoked a gene signature in tumor cells predicting shorter overall survival (OS), relapse-free survival (RFS), and lung metastasis in breast cancer patients. Collectively, our data identified OSM/IL-6/JAK as a clinically relevant paracrine/autocrine axis instigating breast cancer cell plasticity and triggering metastasis.


Subject(s)
Breast Neoplasms , Lung Neoplasms , Neoplasms, Second Primary , Spinocerebellar Ataxias , Humans , Mice , Animals , Female , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Interleukin-6/genetics , Oncostatin M , Cell Plasticity , Cell Line, Tumor , Neoplasm Recurrence, Local , Lung Neoplasms/pathology , Neoplasm Metastasis , Tumor Microenvironment
2.
Biomedicines ; 11(12)2023 Nov 30.
Article in English | MEDLINE | ID: mdl-38137406

ABSTRACT

The melanoma cell adhesion molecule, shed from endothelial and cancer cells, is a soluble growth factor that induces tumor angiogenesis and growth. However, the molecular mechanism accounting for its generation in a tumor context is still unclear. To investigate this mechanism, we performed in vitro experiments with endothelial/cancer cells, gene expression analyses on datasets from human colorectal tumor samples, and applied pharmacological methods in vitro/in vivo with mouse and human colorectal cancer cells. We found that soluble MCAM generation is governed by ADAM17 proteolytic activity and NOX1-regulating ADAM17 expression. The treatment of colorectal tumor-bearing mice with pharmacologic NOX1 inhibitors or tumor growth in NOX1-deficient mice reduced the blood concentration of soluble MCAM and abrogated the anti-tumor effects of anti-soluble MCAM antibodies while ADAM17 pharmacologic inhibitors reduced tumor growth and angiogenesis in vivo. Especially, the expression of MCAM, NOX1, and ADAM17 was more prominent in the angiogenic, colorectal cancer-consensus molecular subtype 4 where high MCAM expression correlated with angiogenic and lymphangiogenic markers. Finally, we demonstrated that soluble MCAM also acts as a lymphangiogenic factor in vitro. These results identify a role for NOX1/ADAM17 in soluble MCAM generation, with potential clinical therapeutic relevance to the aggressive, angiogenic CMS4 colorectal cancer subtype.

3.
Cancers (Basel) ; 13(18)2021 Sep 15.
Article in English | MEDLINE | ID: mdl-34572851

ABSTRACT

The role of the proangiogenic factor olfactomedin-like 3 (OLFML3) in cancer is unclear. To characterize OLFML3 expression in human cancer and its role during tumor development, we undertook tissue expression studies, gene expression analyses of patient tumor samples, in vivo studies in mouse cancer models, and in vitro coculture experiments. OLFML3 was expressed at high levels, mainly in blood vessels, in multiple human cancers. We focused on colorectal cancer (CRC), as elevated expression of OLFML3 mRNA correlated with shorter relapse-free survival, higher tumor grade, and angiogenic microsatellite stable consensus molecular subtype 4 (CMS4). Treatment of multiple in vivo tumor models with OLFML3-blocking antibodies and deletion of the Olfml3 gene from mice decreased lymphangiogenesis, pericyte coverage, and tumor growth. Antibody-mediated blockade of OLFML3 and deletion of host Olfml3 decreased the recruitment of tumor-promoting tumor-associated macrophages and increased infiltration of the tumor microenvironment by NKT cells. Importantly, targeting OLFML3 increased the antitumor efficacy of anti-PD-1 checkpoint inhibitor therapy. Taken together, the results demonstrate that OLFML3 is a promising candidate therapeutic target for CRC.

4.
Cell Adh Migr ; 15(1): 126-139, 2021 12.
Article in English | MEDLINE | ID: mdl-33823745

ABSTRACT

MAGI1 is an intracellular adaptor protein that stabilizes cell junctions and regulates epithelial and endothelial integrity. Here, we report that that in endothelial cells MAGI1 colocalizes with paxillin, ß3-integrin, talin 1, tensin 3 and α-4-actinin at mature focal adhesions and actin stress fibers, and regulates their dynamics. Downregulation of MAGI1 reduces focal adhesion formation and maturation, cell spreading, actin stress fiber formation and RhoA/Rac1 activation. MAGI1 silencing increases phosphorylation of paxillin at Y118, an indicator of focal adhesion turnover. MAGI1 promotes integrin-dependent endothelial cells adhesion to ECM, reduces invasion and tubulogenesisin vitro and suppresses angiogenesis  in vivo. Our results identify MAGI1 as anovel component of focal adhesions, and regulator of focal adhesion dynamics, cell adhesion, invasion and angiogenesis.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Cell Adhesion Molecules/metabolism , Cell Adhesion/physiology , Endothelial Cells/metabolism , Focal Adhesions/metabolism , Guanylate Kinases/metabolism , Neovascularization, Physiologic , Actinin/metabolism , Animals , Cell Movement , Focal Adhesion Protein-Tyrosine Kinases/metabolism , Humans , Integrin beta3/metabolism , Mice , Mice, Transgenic , Paxillin/metabolism , Phosphorylation , Stress, Mechanical , Talin/metabolism , Tensins/metabolism , rac1 GTP-Binding Protein/metabolism , rhoA GTP-Binding Protein/metabolism
5.
Cancer Res ; 81(3): 594-605, 2021 02 01.
Article in English | MEDLINE | ID: mdl-33526470

ABSTRACT

Early detection and adjuvant therapies have significantly improved survival of patients with breast cancer over the past three decades. In contrast, management of metastatic disease remains unresolved. Brain metastasis is a late complication frequently observed among patients with metastatic breast cancer, whose poor prognosis calls for novel and more effective therapies. Here, we report that active hypoxia inducible factor-1 (HIF1) signaling and loss of the miRNA let-7d concur to promote brain metastasis in a recently established model of spontaneous breast cancer metastasis from the primary site to the brain (4T1-BM2), and additionally in murine and human experimental models of breast cancer brain metastasis (D2A1-BM2 and MDA231-BrM2). Active HIF1 and let-7d loss upregulated expression of platelet-derived growth factor (PDGF) B/A in murine and human brain metastatic cells, respectively, while either individual silencing of HIF1α and PDGF-A/B or let-7d overexpression suppressed brain metastasis formation in the tested models. Let-7d silencing upregulated HIF1α expression and HIF1 activity, indicating a regulatory hierarchy of the system. The clinical relevance of the identified targets was supported by human gene expression data analyses. Treatment of mice with nilotinib, a kinase inhibitor impinging on PDGF receptor (PDGFR) signaling, prevented formation of spontaneous brain metastases in the 4T1-BM2 model and reduced growth of established brain metastases in mouse and human models. These results identify active HIF1 signaling and let-7d loss as coordinated events promoting breast cancer brain metastasis through increased expression of PDGF-A/B. Moreover, they identify PDGFR inhibition as a potentially actionable therapeutic strategy for patients with brain metastatis. SIGNIFICANCE: These findings show that loss of miRNA let-7d and active HIF1 signaling promotes breast cancer brain metastasis via PDGF and that pharmacologic inhibition of PDGFR suppresses brain metastasis, suggesting novel therapeutic opportunities. GRAPHICAL ABSTRACT: http://cancerres.aacrjournals.org/content/canres/81/3/594/F1.large.jpg.See related article by Thies et al., p. 606.


Subject(s)
Breast Neoplasms , MicroRNAs , Animals , Brain , Breast Neoplasms/genetics , Cell Line, Tumor , Humans , Hypoxia-Inducible Factor 1 , Mice , MicroRNAs/genetics , Platelet-Derived Growth Factor/genetics
6.
Life Sci Alliance ; 2(4)2019 08.
Article in English | MEDLINE | ID: mdl-31249132

ABSTRACT

NADPH oxidases catalyze the production of reactive oxygen species and are involved in physio/pathological processes. NOX1 is highly expressed in colon cancer and promotes tumor growth. To investigate the efficacy of NOX1 inhibition as an anticancer strategy, tumors were grown in immunocompetent, immunodeficient, or NOX1-deficient mice and treated with the novel NOX1-selective inhibitor GKT771. GKT771 reduced tumor growth, lymph/angiogenesis, recruited proinflammatory macrophages, and natural killer T lymphocytes to the tumor microenvironment. GKT771 treatment was ineffective in immunodeficient mice bearing tumors regardless of their NOX-expressing status. Genetic ablation of host NOX1 also suppressed tumor growth. Combined treatment with the checkpoint inhibitor anti-PD1 antibody had a greater inhibitory effect on colon carcinoma growth than each compound alone. In conclusion, GKT771 suppressed tumor growth by inhibiting angiogenesis and enhancing the recruitment of immune cells. The antitumor activity of GKT771 requires an intact immune system and enhances anti-PD1 antibody activity. Based on these results, we propose blocking of NOX1 by GKT771 as a potential novel therapeutic strategy to treat colorectal cancer, particularly in combination with checkpoint inhibition.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Colonic Neoplasms/drug therapy , NADPH Oxidase 1/antagonists & inhibitors , NADPH Oxidases/antagonists & inhibitors , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Tumor Microenvironment/drug effects , Animals , Cell Line, Tumor , Cell Proliferation/drug effects , Colonic Neoplasms/immunology , Colonic Neoplasms/metabolism , Endothelial Cells/drug effects , Endothelial Cells/metabolism , Humans , Immunotherapy , Interferon-gamma/metabolism , Macrophages/drug effects , Macrophages/immunology , Macrophages/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , NADPH Oxidases/genetics , NADPH Oxidases/metabolism , Natural Killer T-Cells/drug effects , Natural Killer T-Cells/immunology , Natural Killer T-Cells/metabolism , Neovascularization, Pathologic/drug therapy , Neovascularization, Pathologic/metabolism , Programmed Cell Death 1 Receptor/immunology , Reactive Oxygen Species/metabolism , Reactive Oxygen Species/pharmacology , Tumor Microenvironment/immunology
7.
Oncoimmunology ; 6(6): e1316437, 2017.
Article in English | MEDLINE | ID: mdl-28680747

ABSTRACT

Tumor angiogenesis promotes tumor growth and metastasis. Anti-angiogenic therapy in combination with chemotherapy is used for the treatment of metastatic cancers, including breast cancer but therapeutic benefits are limited. Mobilization and accumulation of myeloid-derived suppressor cells (MDSC) during tumor progression and therapy have been implicated in metastasis formation and resistance to anti-angiogenic treatments. Here, we used the 4T1 orthotopic syngenic mouse model of mammary adenocarcinoma to investigate the effect of VEGF/VEGFR-2 axis inhibition on lung metastasis, MDSC and regulatory T cells (Tregs). We show that treatment with the anti-VEGFR-2 blocking antibody DC101 inhibits primary tumor growth, angiogenesis and lung metastasis. DC101 treatment had no effect on MDSC mobilization, but partially attenuated the inhibitory effect of mMDSC on T cell proliferation and decreased the frequency of Tregs in primary tumors and lung metastases. Strikingly, DC101 treatment induced the expression of the immune-suppressive molecule arginase I in mMDSC. Treatment with the arginase inhibitor Nω-hydroxy-nor-Arginine (Nor-NOHA) reduced the inhibitory effect of MDSC on T cell proliferation and inhibited number and size of lung metastasis but had little or no additional effects in combination with DC101. In conclusion, DC101 treatment suppresses 4T1 tumor growth and metastasis, partially reverses the inhibitory effect of mMDSC on T cell proliferation, decreases Tregs in tumors and increases arginase I expression in mMDSC. Arginase inhibition suppresses lung metastasis independently of DC101 effects. These observations contribute to the further characterization of the immunomodulatory effect of anti-VEGF/VEGFR2 therapy and provide a rationale to pursue arginase inhibition as potential anti-metastatic therapy.

SELECTION OF CITATIONS
SEARCH DETAIL
...