Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Pept Sci ; 30(4): e3551, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37926859

ABSTRACT

Antibiotic resistance is an escalating global health threat. Due to their diverse mechanisms of action and evasion of traditional resistance mechanisms, peptides hold promise as future antibiotics. Their ability to disrupt bacterial membranes presents a potential strategy to combat drug-resistant infections and address the increasing need for effective antimicrobial treatments. Amphipathic α-helical peptides possess a distinctive molecular structure with both charged/hydrophilic and hydrophobic regions that interact with the bacterial cell membrane, disrupting its structural integrity. The α-helical amphipathic peptide aurein 1.2, secreted by the Australian frog Litoria aurea, is one of the shortest known antimicrobial peptides, spanning only 13 amino acids. The primary objective of this study was to investigate stapled and photoswitchable modifications of short helical peptides employing biocompatible chemistry, utilising aurein 1.2 as a model system. We developed various stapled versions of aurein 1.2 using biocompatible conjugation chemistry between dicyanopyridine and 1,2-aminothiols. While the commonly employed stapling pattern for longer staples is i, i + 7, we observed superior helicity in peptides stapled at positions i, i + 8. Molecular dynamics simulations confirmed both stapling patterns to support an α-helical peptide conformation. Additionally, we utilised a cysteine-selective photosensitive staple, perfluoro azobenzene, to explore photoswitchable variants of aurein 1.2. A double-cysteine variant stapled at i, i + 7 indeed exhibited a change in overall helicity induced by light. We further demonstrated the applicability of this staple to attach to cysteine residues in i, i + 7 positions of a helix in a model protein. While some of the stapled variants displayed substantial increase in helicity, minimal inhibitory concentration assays revealed that none of the stapled aurein 1.2 variants exhibited increased antimicrobial activity compared to the wildtype.


Subject(s)
Anti-Infective Agents , Antimicrobial Peptides , Animals , Amino Acid Sequence , Cysteine , Protein Conformation , Australia , Peptides/pharmacology , Peptides/chemistry , Anura , Bacteria
2.
Angew Chem Int Ed Engl ; 61(43): e202208400, 2022 10 24.
Article in English | MEDLINE | ID: mdl-35852030

ABSTRACT

Bicyclic peptides possess superior properties for drug discovery; however, their chemical synthesis is not straightforward and often neither biocompatible nor fully orthogonal to all canonical amino acids. The selective reaction between 1,2-aminothiols and 2,6-dicyanopyridine allows direct access to complex bicyclic peptides in high yield. The process can be fully automated using standard solid-phase peptide synthesis. Bicyclization occurs in water at physiological pH within minutes and without the need for a catalyst. The use of various linkers allows tailored bicyclic peptides with qualities such as plasma stability, conformational preorganization, and high target affinity. We demonstrate this for a bicyclic inhibitor of the Zika virus protease NS2B-NS3 as well as for bicyclic versions of the α-helical antimicrobial peptide aurein 1.2.


Subject(s)
Peptides, Cyclic , Zika Virus , Amino Acids , Peptide Hydrolases , Viral Nonstructural Proteins/chemistry , Water , Zika Virus/drug effects , Peptides, Cyclic/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...