Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Immunother Cancer ; 8(2)2020 12.
Article in English | MEDLINE | ID: mdl-33293356

ABSTRACT

BACKGROUND: Prostate cancer (PCa) is a major health problem worldwide. Taxol derivatives-based chemotherapies or immunotherapies are usually proposed depending on the symptomatic status of the patient. In the case of immunotherapy, tumors develop robust immune escape mechanisms that abolish any protective response, and to date why prostate cancer is one of the most resistant diseases remains unresolved. METHODS: By using a combination of clinical data to study the transcriptome of metastasis samples from patients with castration-refractory prostate cancer, and state of the art cellular and molecular biology assays in samples from tumor-bearing mice that have been submitted to surgical resection of the tumor before receiving a vaccination, we answered several essential questions in the field of immunotherapy for prostate cancer. We also used two different methods to inhibit the expression of galectin-3 (Gal-3) in tumor cells: a stable RNA interference method to control the expression of this galectin efficiently only in tumor cells, and low and non-cytotoxic doses of docetaxel to easily transfer our findings to clinical settings. RESULTS: Herein, we show for the first time that Gal-3 expressed by prostate tumor cells is the main immune checkpoint responsible for the failure of vaccine-based immunotherapy. Our results show that low and non-cytotoxic doses of docetaxel lead to the inhibition of Gal-3 expression in PCa cells as well as in clinical samples of patients with metastatic and castration-resistant PCa promoting a Th1 response. We thus optimized a prostate cancer animal model that undergoes surgical resection of the tumor to mimic prostatectomy usually performed in patients. Importantly, using Gal-3-knocked down-PCa cells or low and non-cytotoxic doses of taxane before vaccination, we were able to highly control tumor recurrence through a direct impact on the proliferation and infiltration of CD8+ cytotoxic T. CONCLUSIONS: Thus, Gal-3 expression by PCa cells is a crucial inhibitor for the success of immunotherapy, and low doses of docetaxel with non-cytotoxic effect on leukocyte survival could be used before immunotherapy for all patients with PCa to reduce the expression of this critical negative immune checkpoint, pre-conditioning the tumor-microenvironment to activate an antitumor immune response and promote tumor-free outcome.


Subject(s)
Galectin 3/antagonists & inhibitors , Immunotherapy/methods , Prostatic Neoplasms/drug therapy , Vaccination/methods , Animals , Galectin 3/pharmacology , Galectin 3/therapeutic use , Humans , Male , Mice , Prostatic Neoplasms/pathology , Treatment Outcome
2.
Biomolecules ; 10(5)2020 05 12.
Article in English | MEDLINE | ID: mdl-32408492

ABSTRACT

Galectins are small proteins with pleiotropic functions, which depend on both their lectin (glycan recognition) and non-lectin (recognition of other biomolecules besides glycans) interactions. Currently, 15 members of this family have been described in mammals, each with its structural and ligand recognition particularities. The galectin/ligand interaction translates into a plethora of biological functions that are particular for each cell/tissue type. In this sense, the cells of the immune system are highly sensitive to the action of these small and essential proteins. While galectins play central roles in tumor progression, they are also excellent negative regulators (checkpoints) of the immune cell functions, participating in the creation of a microenvironment that promotes tumor escape. This review aims to give an updated view on how galectins control the tumor's immune attack depending on the tumor microenvironment, because determining which galectins are essential and the role they play will help to develop future clinical trials and benefit patients with incurable cancer.


Subject(s)
Clinical Trials as Topic , Galectins/metabolism , Immune System/metabolism , Neoplasms/metabolism , Animals , Humans , Immune Checkpoint Inhibitors/pharmacology , Immune Checkpoint Inhibitors/therapeutic use , Immune System/drug effects , Neoplasms/diagnosis , Prognosis
3.
Front Immunol ; 9: 2190, 2018.
Article in English | MEDLINE | ID: mdl-30319642

ABSTRACT

The identification of effective new therapies for prostate cancer (PCa) requires a better understanding of the multiple molecular interactions between tumor cells and their associated microenvironment. In this context, galectin-1 (Gal-1) is a key molecule in the determination of the prostatic carcinoma microenviroment; therefore, it is essential to understand all the molecular processes in which this protein is involved. Most of the previous studies found in the literature have focused on the microenvironment remodeling properties of tumor-secreted Gal-1, through its interactions with the glyco-receptors at the cell membrane and the extracellular matrix. This report shows original aspects of the lectin by focusing on the role of lymphocyte endogenous Gal-1 in controlling anti-prostate tumor immunity. Using a murine preclinical model of prostate cancer, our results demonstrate that endogenous Gal-1 in lymphocytes modulates their proliferative rate and cytotoxic function in conditions of high extracellular Gal-1 concentration, mainly derived from tumor cells. In such conditions, the absence of Gal-1 in T lymphocytes potentiates anti-tumor immune responses. Further studies demonstrated that endogenous Gal-1 in CD4+, but mainly in CD8+T cells, acts as a negative regulator of anti-tumor immunity. In conclusion, prostate tumors require Gal-1 in lymphocytes to evade immune responses. This report lays the foundation for an original immunotherapy strategy for prostate cancer.


Subject(s)
Galectin 1/immunology , Prostatic Neoplasms/immunology , T-Lymphocytes/immunology , Tumor Microenvironment/immunology , Animals , Cell Line, Tumor/transplantation , Cell Proliferation , Disease Models, Animal , Galectin 1/genetics , Galectin 1/metabolism , Humans , Immunotherapy/methods , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Mice, Nude , Prostatic Neoplasms/pathology , Prostatic Neoplasms/therapy , T-Lymphocytes/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...